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MOTIVATION

Understanding of dissolution/precipitation processes in porous media and coupling to transport properties is 
necessary for the assessment of the performance of engineered and natural barriers in nuclear waste 
repositories

• Reactive Transport Modelling can predict the fate 

of radionuclides in space & time

• Challenge: Description of the coupling between 

chemical processes and changes in material 

properties (e.g. porosity, permeability) 
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COUPLING OF POROSITY TO TRANSPORT PROPERTIES
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The classical approach

permeability

Kozeny-Carman equation

diffusivity

Archie’s law

dissolution/precipitation of minerals

porosity changes

Need of experimental benchmarks: 

• to evaluate implementations in reactive transport 

models 

• to build confidence in the predictions of reactive 

transport models

classical approaches



EXPERIMENTAL DESIGN & CONCEPT 
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Mineral precipitation and consequences on permeability

SrSO4(s) + Ba2+
(aq) → Sr2+

(aq) + BaSO4(s)

molar volume BaSO4 > molar volume SrSO4 

→ porosity & permeability decrease

3 experiments: 100 mM Ba (exp. 1), 

10 mM Ba (exp. 2), 1 mM Ba (exp. 3)

Investigation of the effect of supersaturation on precipitation processes in porous media

Assessing porosity and pore connectivity changes

using high field MRI (B0 = 4.7T)

Flow through column Nuclear Magnetic Resonance Imaging (MRI)



POROSITY - PERMEABILITY CHANGES
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• In experiment 1 and 2, similar porosity, but permeability differs by 1 order of magnitude

• In experiment 3, porosity remains constant, but permeability decreases by 2 orders of magnitude

➢ Small changes in porosity cause significant changes in permeability



MICROSTRUCTURAL CHANGES
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EDX elemental map of the reacted celestine zone with secondary barite overgrowth

Saturation Index

SI 3.97 - 3.94
100 mM BaCl2

SI 3.82 - 0.344
10 mM BaCl2

SI 3.35 - 0.277
1 mM BaCl2

• 1 mM Ba: new pore architecture

• 100 mM Ba: uniform BaSO4 distribution

• 10 mM Ba: non-uniform BaSO4 distribution

➢ Mineral growth mechanism influences the 
change in pore architecture and consequently 
permeability

Poonoosamy et al 2020, Geochim Cosmochim Acta 270, 43–60.



EVALUATION OF POROSITY – PERMEABILITY COUPLING 
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• Alternative porosity - permeability relation 

(Verma & Pruess 1988) :

k0 initial permeability; Ø0 initial porosity

Øcritical critical porosity 

1 ≤ 𝑛 ≤ 6 , for 0.8 Ø0 ≤ Øcritical ≤ 0.9Ø0

Øcritical and n set to 0.38 and 4 to match experimental data

𝑘 = 𝑘0
Ø − Ø𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

Ø0 − Ø𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝑛

• Simulations using modified Kozeny-Carman 

equation failed to predict permeability changes

Poonoosamy et al 2020, Geochim Cosmochim Acta 270, 43–60.
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EVALUATION OF POROSITY – PERMEABILITY COUPLING 
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Reactive transport modelling using Open-GeoSys-GEMs

• Simulations using modified Kozeny-Carman 

equation failed to predict permeability changes

• More sophisticated porosity/permeability 

relationship involving a critical porosity required 

to describe permeability changes due to 

precipitation processes

• What is the physical meaning of critical 

porosity?



VISUALISATION OF POROSITY CHANGES BY MRI

Temporal evolution of porosity

• 2D relaxometry measurements show a 

decrease in porosity with time

• Clogging zones, need to be upscaled

→ so-called critical porosity 

Can the concept behind the Verma and Pruess

relationship be applied for a diffusive system?

localized clogging
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Poonoosamy et al 2020, Minerals 10, 226.



EXPERIMENTAL DESIGN & CONCEPT
Mineral precipitation and consequences on diffusivity

Microfluidic experiment Chip design

20 µm

reservoir of 800 µm 

× 450 µm × 1 µm filled with 

SrSO4 crystals of size 4-9 µm 

inlet

outlet

laminar flow in the 

channel and 

diffusion of solutes 

into the reactive 

porous medium

SrSO4(s) + Ba2+
(aq) →

Sr2+
(aq) + BaSO4(s)

BaCl2

setup

microreactor
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CHANGES IN PORE ARCHITECTURE
Raman imaging 

timePDMS, SrSO4, BaSO4
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EFFECTIVE DIFFUSION COEFFICIENT
Pore scale modelling using Lattice Boltzmann method (ongoing)

• Derivation of a porosity – diffusivity relationship

• Check poster of Mara Lönartz (11th November, 

14:20h) for porosity – diffusivity relationships

Pore scale modelling of tracer diffusion across the 

reacted porous medium to derive the effective 

diffusion coefficient De

Experiment
800 µm

100 µm diffusivity fitted with critical 
porosity
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Experimental investigations show limitations of classical approaches to model hydrogeochemical 

processes associated with porosity decrease in porous media

Investigations at the pore scale are necessary to understand and quantify the effects of crystallization 

mechanisms on porosity changes

There is a need to develop process-based predictive models and mathematical relationships 

that account for small scale heterogeneity and integration into larger scale analysis 

(upscaling)

CONCLUSIONS
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