Supplement of

Developing a radiation field-based monitoring system for the transport and storage cask inventory during extended interim storage

Mira Stephan et al.

Correspondence to: Mira Stephan (mira.stephan@hszg.de) and Michael Wagner (michael.wagner3@tu-dresden.de)

The copyright of individual parts of the supplement might differ from the article licence.
Developing a radiation-field-based monitoring system for the transport and storage cask inventory during extended interim storage

Motivation and Task

- Radiation-field outside CASTOR® V/19-cask at the cylinder surface (simulated with MCNP6.2)
- Spent nuclear fuel: medium burn-up of 56.7 GWd/tHM and 5 years cooling time
- Fuel distribution changes: axial redistribution at different fuel assembly positions

Gamma- and Neutron-Fields: Simulation

- Gamma-field shows only changes at outer fuel assembly
- Subsiduation more recognizable at lower energies

Cosmic Muons: Volume Reconstruction

Maximum Likelihood estimation:
 - Discretization of the object
 - Assume path through the object (PoCA or more likely path)
 - Calculate the muon path length for every muon and voxel “system matrix”
 - Solve the linear equation system with measured data
 - Full container simulation:
 - Simulation of cosmic muons with G4beamline
 - Measurement time = 12 h (5.3¹⁷ events)
 - MLEM-reconstruction with region clustering

Gamma- and Neutron-Fields: Measurement System

- Neutron-field shows changes at outer and inner fuel assembly
- Subsiduation more recognizable at lower energies

- Simulation with fuel relocation:
 - 9 cm vertical subsiduation → Vertical scattering density profile of central fuel assembly (normalized)

References

/3/ Bundesamt für die Sicherheit der nuklearen Entsorgung: Unsere Forschungsagenda, 2019

Acknowledgments

The investigations are funded by the German Federal Ministry of Economic Affairs and Energy on the basis of a decision by the German Bundestag. Grant identification number: 1501606A and 1501606B

The authors gratefully acknowledge the GK-IT support for funding this project by providing computing time through the Center for Information Services and HPC (ZIH) at TU Dresden.

**University of Applied Sciences Zittau/Görlitz

Copyright: Author: mira.stephan@hzg.de, Michael.Wagner3@tu-dresden.de

Support safety during prolonged interim storage and elongation of approval