

Supplement of

Methodology of structured development and validation of multiphysical constitutive models using the example of crushed salt compaction under 3D THM load conditions

Uwe Düsterloh and Svetlana Lerche

Correspondence to: Svetlana Lerche (svetlana.lerche@tu-clausthal.de)

The copyright of individual parts of the supplement might differ from the article licence.

Methodology of structured development and validation of multiphysical constitutive models using the example of crushed salt compaction

under 3D-THM load conditions

apl. Prof. Dr.-Ing. habil. U. Düsterloh

Dr.-Ing. Svetlana Lerche

Berlin, 10-12.11.2021

Methodical approach

<u>phys</u>ical modeling for geomechanical tasks to systemize/optimize

Me-Phys-t-O

• constitutive model AQUA-Mod

lab database
 SIS-LabPro

Overview

1. <u>Methodology</u> for development and validation

in the framework of physical modeling

2. <u>Demo</u> for the application of the methodology:

crushed salt behavior

2.1. Design, creation & analysis of the database:

<u>TUC-V2</u>

2.2. Development of the new constitutive model:

EXPO-COM

3. Summary und Outlook

What?

Typical task/need: (Further)-develomment of a numerical equipment

Why?

New areas of application

- Range of validity
- Functionality/influencing factors
- Higher quality/realism

Why?

New areas of application

Higher quality/realism

Functionality/influencing factors

Range of validity

What?

Typical task/need: (Further)-develomment of a numerical equipment

How?

Iceberg/Triangle of Geomechanical Tasks

safe ND Interest on the dispo

What?

Typical task/need: (Further)-develomment of a numerical equipment

How?

Iceberg/Triangle of Geomechanical Tasks

Why?

New areas of application

- Range of validity
- Functionality/influencing factors
- Higher quality/realism

How?

Methodical approach

in the framework of physical modeling for geomechanical tasks/issues to systemize/optimize of the development process **Me-Phys-t-O (TUC)**

• Evaluative & comparative analysis
 →Structural uniform decomposition
 AQUA-Mod

Design & creation of the database
 SIS-LabPro

- Analysis of the database
- \rightarrow Development/validation
- of the constitutive model

AQUA-Mod

Interdisciplinary research symposium on the safety of nuclear disposal practices

lausthal

shema for structural decomposition of a constitutive model

KUMPASS I, TINAI report,

 TUC, U. Düsterloh, S. Lerche

 Methodology of the development and validation of constitutive models

Methodology: example of analysis for constitutive models

<u>,SIS-LabPro'</u>

shema/guidelines

- for optimized design
- of the <u>Lab</u>oratory <u>Prog</u>ram

\rightarrow <u>S</u>ystematics

≁

≁

- · Comparability of tests
- · Completeness
- \rightarrow **[**solability: processes/factors]
- · Uniqueness/interpretability
- · Exclusion/reduction of scatter

- $t \rightarrow \underline{S}$ tructure
- Prioritization
- · Optimized organization/analysis

Methodology: examples for design of lab test program

Interdisciplinary research symposium on the safety of nuclear disposal practices

Clausthal

shema/guidelines for optimized design/development of a constitutive model

shema/guidelines for optimized design/development of a constitutive model

\rightarrow Specifying the model structure

- Processes
- Influencing factors
- · Capability for implementation
- · Capability for validation
- · Justification (association with microstructural processes/ phenomenological/ reological)

ightarrow Formulation of functional relationships

general considerations

,Occam's razor'/principle of minimalism

- \cdot Dimensional Analysis \rightarrow unitless characteristic variables
- \rightarrow Identification of functional relationships
 - specific detection lab data related
- Isolation for analysis in individual tests
- of separate processes, influencing factors
- \rightarrow detection instead of assumptions, instead of curve fitting
- · Standardization/scaling for systematic analysis of several tests

isolation

3

lausthal

 \Box

ideal for isolation:

- \rightarrow InF1 Variation
- $\rightarrow Keeping all other factors constant:$ InF2=const, InF3=const, ... $\dot{\varepsilon} = f(InF1, InF2, InF3,...) = f(InF1)$

TUC, U. Düsterloh, S. Lerche

Methodology of the development and validation of constitutive models

→ low density of information

- Lab tests with special BC to avoide/reduce the process overlap
- Normalisation of measurement data
- Step-by-step procedure for determining of relationships

* InF= influencing factor

8

* if possible/available

Interdisciplinary

research symposium

on the safety of nuclear disposal practices

Overview

1. <u>Methodology</u> for development and validation

in the framework of physical modeling

2. <u>Demo</u> for the application of the methodology:

crushed salt behavior

2.1. Design, creation & analysis of the database:

<u>TUC-V2</u>

2.2. Development of the new constitutive model:

EXPO-COM

3. Summary und Outlook

Lab program designed in the framework of KOMPASS I BGR Institut für TU Clausthal IfG Gebirgsmechanik GmbH Leipzig Proposal for extended systematic laboratory program for crush salt compaction **P1** Objective: **Objective**: $\phi \leq 1\%$ Creation of solid systematic data base - in situ relevant \rightarrow isolated observation of processes and influencing factors, Part 1 - long term behavior for developing and validation of constitutive models - not investigated yet: (separated functional relationships) Μ Part 2 achievable in lab (?!), robust measurably (?!) porosity____ - lab benchmark isotropic deviatoric Μ temperature compaction status load load **V1** $\rightarrow BGR$ **V2 S**5 V3 **V4** 15 \rightarrow GRS (φ) $f(\sigma_m)$ $f(\sigma_{v})$ T (φ) $\rightarrow TUC$ \rightarrow IfG duration t = 1-2years, till $\phi \leq 1\%$ Load type water content / Load type pre-compaction 1. Stress geometry stress/strain rate saturation TC/TE, S4 **S**3 \$1 **S2** Objective: ε = const so/TC/TE (S) ε =const - tightness vs σ=const vs σ=const - in situ relevant Η \rightarrow permeability: $K = f(\phi, \sigma_3)$ for low ϕ * S - series of tests, V - individual test $\rightarrow p_{fl}$ influence ,**TUC-V2**' P1 = priority 1nificant influence expected, insufficient investigated yet

TUC, U. Düsterloh, S. Lerche Methodology of the development and validation of constitutive models

Clausthal

TUC-V2 Phase I: KOMPASS I

×

Clausthal

Afe Interdisciplinary research symposium on the safety of nuclear disposal practices

TUC, U. Düsterloh, S. Lerche Methodology of the development and validation of constitutive models

TUC-V2 Phase I: KOMPASS I

Interdisciplinary research symposium on the safety of nuclear disposal practices

TUC, U. Düsterloh, S. Lerche Methodology of the development and validation of constitutive models

TUC-V2 Phase II: KOMPASS II

×N)

Clausthal

Interdisciplinary research symposium

F1e18

F1e10

F1e4

20

25

30

Iower bound

35

on the safety of nuclear disposal practices

TUC-V2 Phase II: KOMPASS II

TUC-V2 Phase III: KOMPASS II

Interdisciplinary research symposium on the safety of nuclear disposal practices

measurement

ж**i**ĺ¥

Clausthal TUC, U. Düsterloh, S. Lerche Methodology of the development and validation of constitutive models

ж**і**й

Interdisciplinary

research symposium on the safety of nuclear disposal practices

TUC, U. Düsterloh, S. Lerche

Clausthal

Methodology of the development and validation of constitutive models

Overview

1. <u>Methodology</u> for development and validation

in the framework of physical modeling

2. <u>Demo</u> for the application of the methodology:

crushed salt behavior

2.1. Design, creation & analysis of the database:

<u>TUC-V2</u>

2.2. Development of the new constitutive model:

EXPO-COM

3. Summary und Outlook

Current database for development of constitutive model

TUC, U. Düsterloh, S. Lerche Methodology of the development and validation of constitutive models

ж́і́ў

Clausthal

Interdisciplinary

disposal practices

research symposium

on the safety of nuclear

Example for identification of functional relationships: f(porosity)

Analysis Version 07-07-2021

lausthal

х**і**й Clausthal

TUC, U. Düsterloh, S. Lerche

Methodology of the development and validation of constitutive models

Evaluation of functionality, validity and robustness of EXPO-COM

<u>Validation state</u> \rightarrow reliability/robustness/realism of statements

• All relevant influencing factors were included

Clausthal

- For each of the factors included, at least one test is available and has been successfully used for development and validation
- Investigated areas for some influencing factors are not yet sufficient
- Number of tests/amount of data base for some influencing factors are not yet sufficient

Overview

1. <u>Methodology</u> for development and validation

in the framework of physical modeling

2. <u>Demo</u> for the application of the methodology:

crushed salt behavior

2.1. Design, creation & analysis of the database:

<u>TUC-V2</u>

2.2. Development of the new constitutive model:

EXPO-COM

3. Summary und Outlook

Summary and Outlook

TU Clausthal

TUC, U. Düsterloh, S. Lerche Methodology of the development and validation of constitutive models