

Supplement of

Pilot plant tests to demonstrate the functionality of sealing elements made of salt cut bricks

Uwe Düsterloh et al.

Correspondence to: Uwe Düsterloh (uwe.duesterloh@tu-clausthal.de)

The copyright of individual parts of the supplement might differ from the article licence.

Funded by

Managed by

Federal Ministry for Economic Affairs ΡΤΚΑ Project Management Agency Karlsru and Energy

Lehrstuhl für Deponietechnik und Geomechanik • apl. Prof. Dr.-Ing. habil. Uwe Düsterloh • Dr.-Ing. Svetlana Lerche • Dr.-Ing. Juan Zhao

Pilot plant tests to demonstrate the functionality of sealing elements made of salt cut bricks

1. Motivation: initial porosity of chrushed salt is given by some 35 - 40%

initial porosity of salt cut bricks is given by some 1 - 5%depending on joint thickness and brick size

<u>idea</u> a sealing element made of salt-cut bricks offers the potential for an early loadbearing and sealing effect

2. Preliminary investigations into the sealing behaviour of salt cut surfaces

3. Construction of a pilot plant to analyze in detail the performance of a sealing element made of salt cut bricks

sample size:1,5 m x 0,75 m

4. Production of salt cut bricks – avoidance of axially continuous joints

3 brick types x 3 brick sizes 3 layers with different brick typ and size are followed by 3 layers, each rotated by 15°

- 12 t basic raw material \rightarrow 0,66 m³ / 1,5 t sealing element ≈ 6 t crushed salt
- ≈ 4,5 t offcuts
- ≈ 7 salt bricks per week \rightarrow ≈ 1a per sample

 \rightarrow 375 bricks per sample

5. Triaxial THM test control and evaluation

 $\frac{2p_A \cdot \dot{Q}_A \cdot \mu_A \cdot L}{A(p_A^2 - p_B^2)}$

 $\downarrow p_A$

Measurement results:

a sealing element made of salt-cut bricks with moistened cut surfaces achieves a high sealing effect under typical in situ loading conditions within a few months

e.g. stage-I-2: σ_r / σ_z = 12.5 / 13 MPa, $p_{gas_primary}$ / $p_{gas_secondary}$ = 0.2 / 10 MPa

					$K_A = \frac{2p_A \cdot Q_A}{2p_A \cdot Q_A}$
	p gas_primary	p _{gas_secondary}	σr -p gas_secondary	К	$A(p_A^2 - 2p_B \cdot \dot{O}_B)$
	MPa	MPa	MPa	m ²	$K_B = \frac{2p_B q_B}{A(p_A^2)}$
	σ	<mark>շ, = 12.5 MPa, σ</mark> z =	13 MPa		VA
stage-I-1	0.2	12	0.5	4.0E-19	
stage-I-2	0.2	10	2.5	2.1E-20	
stage-I-3	0.2	8	4.5	5.2E-22	
stage-I-4	0.2	9	3.5	9.9E-22	
stage-I-5	0.2	10	2.5	7.2E-21	
stage-I-6	0.2	9	3.5	1.5E-21	
stage-I-7	0.2	8	4.5	2.3E-22	
stage-I-8	0.2	11	1.5	3.1E-20	
stage-I-9	0.2	12	0.5	2.1E-19	
stage-I-10	0.2	11	1.5	3.3E-20	
		σ <mark>r = 8.5 MPa, σ</mark> z =	9 MPa		
stage-II-1	0.2	4	4.5		
stage-II-2	0.2	5	3.5	1.6E-21	
stage-II-3	0.2	6	2.5	5.9E-21	
stage-II-4	0.2	7	1.5	2.7E-20	
stage-II-5	0.2	8	0.5	2.1E-19	
stage-II-6	0.2	6	2.5	1.3E-20	