

Supplement of

Dissolution of simplified nuclear waste glass and formation of secondary phases

Felix Brandt et al.

Correspondence to: Felix Brandt (f.brandt@fz-juelich.de)

The copyright of individual parts of the supplement might differ from the article licence.

Dissolution of simplified nuclear waste glass (ISG) and formation of secondary phases

Felix Brandt¹, Martina Klinkenberg¹, Sébastien Caes², Jenna Poonoosamy¹, Wouter Van Renterghem³, Juri Barthel⁴, Karel Lemmens², Dirk Bosbach¹, Karine Ferrand² ¹Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; f.brandt@fz-juelich.de ²Institute for Environment, Health and Safety, SCK CEN, B-2400 Mol, Belgium; ³Institute for Microstructural and Non-Destructive Analysis, SCK CEN, B-2400 Mol, Belgium ⁴Ernst Ruska-Centre (ER-C 2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Introduction & Objectives:

Leaching mechanism = selective removal of cations

• Still state-of-the art for waste management agencies but under debate in the scientific community

Models based on the proposed leaching mechanism are mainly based on macroscopic experiments at low surface area to volume (SA/V) ratio (e.g. Frugier et al., 2018)

- Details of surface alteration layer (SAL) formation?
- Formation of new phases and incorporation of RN?
- Relevant experimental conditions e.g. high pH, low 1 due to the presence of concrete and cement?

→ The microscopic view

Effect of high pH

- Morphology and properties of altered phase?
- Type of newly formed secondary phases?

Lower temperature

- More difficult to form crystalline secondary phases?
- Slower dissolution of the glass?

Higher SA/V

• More secondary phase formation?

ISG

Element	Wt%	Mol%
Si	26.3	18.0
В	5.4	9.6
Na	9.0	7.6
AI	3.2	2.3
Са	3.6	1.7
Zr	2.4	0.5
0	50.1	60.3

YCWCa

Element	Concentration (mg/kg)
AI	0.06 ± 0.04
В	< 1
Са	17.8 ± 1.8
Na	3120 ± 310
К	12400 ± 1200
Si	0.48 ± 0.21

Identification of secondary phases (XRD + SEM)

- Zeolites (Na and K zeolite)
- Calcium silicate hydrate phases (CSH)

Microscopic perspective, residual stage: the glass/SAL interface (TEM), SA/V = 264000 m⁻¹

- Very thin porous altered layer, **no colloids**
- Structure resembles a bubble foam
- Fibrous secondary phases relationship with the cavities of the porous layer?

$SA/V = 8300 \text{ m}^{-1}$

Mann et al., 2019, ISG glass in YCWCa @70 °C

- •Gel layer of multiple colloidal bands
- Sharp boundaries between layers
- •Crystalline phases formed around the outer edge

Macroscopic perspective

Normalized element release NL_i = amount of glass (g/m²) dissolved at a given time calculated from the element release. NL_i and residual rate of 6 x 10^{-6} g/m²d in the usual range

Thermodynamic equilibrium calculation based on mass balance of dissolved elements (NL_i) Blind prediction: All cations released end up in

secondary phases, if they are supersaturated.

Batch experiments at high pH and high SA/V

Parameter Temperature (°C) Particle fraction (µm) Mass of glass powder (g)

Specific surface area of glass powder by BET (m²/g) Solution composition

- Weight of solution (g)
- SA/V (m⁻¹)

Duration (days)

70
20 – 25
3 ± 0.005
0.440 ± 0.002
YCWCa, pH(70 °C) = 12.5 ± 0.2
5 ± 0.005
264 000
59, 288, 385, 632, 952

Setting

Predicted and observed

	Calculated (113 g glass dissolved)	Experiment (385 days)
Na (mg/L)	13856	12807
AI (mg/L)	< 0.01	0.12
Ca (mg/L)	0.34	7.83
K (mg/L)	8911	4549
Si (mg/L)	1164	723.75
Zr (mg/L)	0.00	0.0006
B (mg/L)	6356	6969
SO ₄ (mg/L)	196	188
pH _(70 °C)	10.1	9.6

Not observed due to kinetics

- Quartz
- Baddeleyite

- formed

- grown

 \rightarrow Competition between dissolution/reprecipitation of secondary phases and formation of a leached layer

Materials and Methods:

Modelling of thermodynamic equilibria (GEMS-PSI) - Estimation of secondary phase equilibrium assuming congruent dissolution and precipitation

Characterization of the solid

- Separation of crystalline secondary phases – XRD of separated grain size fractions – Electron microscopy: SEM, FIB, TEM

Sample taken from day 385

- Sample embedded in resin
- surface

References

 Macroscopic element release NL_i and residual dissolution rate of 6 x 10⁻⁶ g/m²d in a usual range • No resumption although secondary phases are

• Thermodynamic blind predictions can predict the observed secondary phases, some phases are missing due to kinetic reasons

 CSH phases and zeolites confirmed by SEM, XRD or TEM. Stable phases such as K-zeolite present as well as metastable Na-zeolite and CSH of a kinetically controlled composition.

• The **unusual microstructure:** very thin, porous layer from which CSH phases appeared to have

 Polished to obtain a cross-section • FIB section prepared perpendicular to the polished