Supplement of

Impact of increased temperatures on the geochemical behaviour of trivalent actinides in aquatic systems

Andrej Skerencak-Frech et al.

Correspondence to: Andrej Skerencak-Frech (andrej.skerencak@kit.edu)

The copyright of individual parts of the supplement might differ from the article licence.
Impact of Increased Temperatures on the Geochemical Behavior of Trivalent Actinides in Aquatic Systems

A. Skerencak-Frech, Petra J. Panák, Kathy Dardenne, Jörg Rothe, Xavi, Gaona, M. Altmairer, H. Geckels

Due to their long half-lives and their radiotoxicity, actinides are of major importance for the long term safety of a nuclear waste repository. An important safety issue is the retention and migration of the actinides in the aquifer of the surrounding host rock of the repository. Therefore, their geochemical behavior under repository conditions must be understood for the Safety Case of a nuclear waste repository. Hereby, elevated temperatures are of interest under near field conditions.

Inorganic ligands – Sulphate, Nitrate, Chloride, Fluoride

- **Exemplary Emission Spectra for the Cm(III)-SO₄²⁻ System**
 - Strong redshift with increasing T
 - Peak deconvolution reveals chemical speciation
 - Strong favoring of the formation of complexes species at elevated T

Why studies at elevated T?

- **In situ measurement** without disturbing the chemical equilibrium
- **Emission spectra and fluorescence lifetimes** for the characterization of Cm(III) complexes
- **Measurement in different media**: - Aqueous and organic solution - Suspension - Solid phase - Mineral surfaces

Thermodynamic data needed

- ΔrH°₂₉₈ / kJ mol⁻¹
- ΔrS°₂₉₈ / J mol⁻¹ K⁻¹

Conclusions

- **Strong impact of elevated temperatures on the compation of trivalent actinides with inorganic and organic ligands**
 - Successful application of custom-built high temperature cells for laserspectroscopic studies up to 200 °C
 - Almost all ligands show a distinct increase of log [B(T)] with the temperature
 - Complexation reactions are in general endothermic and entropy driven
 - Stronger complexation (e.g. chelating ligand) leads to lower RH0 and weaker temperature dependency.
 - Formation of new complex species at elevated temperatures possible, which need to be considered for the Safety Case of a Nuclear Waste Repository