Supplement of Saf. Nucl. Waste Disposal, 1, 19–20, 2021 https://doi.org/10.5194/sand-1-19-2021-supplement © Author(s) 2021. CC BY 4.0 License.

Supplement of

Explanations for the development of a novel universally inside pipe separator for dismantling (contaminated) pipelines

Madeleine Bachmann and Sascha Gentes

Correspondence to: Madeleine Bachmann (madeleine.bachmann@kit.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Institute of Technology and Management in Construction - Deconstruction and Decommissioning of Conventional and Nuclear Buildings

Am Fasanengarten, Bldg. 50.31 76131 Karlsruhe www.tmb.kit.edu

Explanations for the development of a novel universally inside pipe separator for dismantling (contaminated) pipelines

Funded by the Federal Ministry of Education and Research (BMBF) as part of the FORKA - Research for the Decommissioning of Nuclear Facilities funding measure.

1. State of the Art

- Dismantling of pipelines in nuclear facilities poses a variety of challenges due to, among other factors confined space or the routing of pipelines
- Existing pipe cutting systems have significant disadvantages:
 - Not suitable for mobile use
 - Cutting the pipes is usually done from the outside of the pipe
 - Cutting systems for internal pipe separation are only available for a specific application or pipe diameter
 - No integrated drive and holding system as well as high set-up and assembly times

Small excerpt of examples of currently available cutting systems for the dismantling of pipelines

2. Aim of the Project

- Development of an innovative internal pipe cutting device with a wide range of applications in terms of pipe diameter, wall thickness and material
- Continuous extraction of chips or other residual materials
- Combination of cutting and cleaning as well as removal of the cut pipelines
- Dismantling of pipelines that are difficult to access, use both in air and under water
- Manual or remote operation for flexible insertion
- Decontamination of the internal pipe separator

Schematic illustration of the planned cutting device [dimensions in mm].

© Siempelkamp NIS

3. Research at KIT - TMB

Development and construction of a test stand

Measuring stand for pre-test series at KIT

 Experimental test series for uniform internal pipe cutting with different cutting tools

© Hoffmann-Grou year unknown.

Milling discs, saw blades and cutting discs are used for the pre-test series

- Test series on different pipes
 - Wall thickness, material and diameter

Pre-Test are performed on exposed and concreted- in pipes

- Practical test series of different operating parameters
 - Feed rate and Speed

Project Information

Funding code BMBF: 15S9415A

Funding period: 01.08.2019 – 31.07.2022

Project partner:

Siempelkamp NIS engineering company mbH

RWE Nuclear GmbH

SPONSORED BY THE

Karlsruhe Institute of Technology (KIT) Institute of Technology and Management

Institute of Technology and Management in Construction (TMB)

Prof. Dr.-Ing. Sascha Gentes, Tel.: +49 721 608-46546, E-Mail: sascha.gentes@kit.edu M.Sc. Madeleine Bachmann, Tel.: +49 721 608-48221, E-Mail: madeleine.bachmann@kit.edu M.Sc. Michael Pfau, Tel.: +49 721 608-48221, E-Mail: michael.pfau@kit.edu

