

Supplement of

Assessment of Partitioning and Transmutation of High-Level Waste and Hypothetical Implementation Scenarios in Germany

Friederike Frieß et al.

Correspondence to: Friederike Frieß (friederike.friess@boku.ac.at)

The copyright of individual parts of the supplement might differ from the article licence.

Assessment of Partitioning and Transmutation of High Level Waste -Hypothetical Implementation Scenarios in Germany

BOKU Wien, ISR Friederike Frieß, Wolfgang Liebert

🔀 😳 🔛 💿 🐭 🚱 🥥 🖉 🖾 🛓 💽 😭 😒

Overview

What is Partitioning & Transmutation?

- Fuel Cycle
- Criteria for Assessment
- Technology

Simulation

- Scenarios + Assumptions
- Separated Plutonium Stockpile
- Minor Actinide Stockpiles

Conclusion

Partitioning and Transmutation (P&T)

Partitioning: Separation of spent nuclear fuel into different material streams

- (short-lived) fission products
- Plutonium
- Minor Actinides (MA): Np, Am, Cm

Transmutation: Transformation of long-lived radionuclides into short-lived or stable isotopes

Goal: Significantly reduced requirements on long-term radioactive waste management

P&T Fuel Cycle

Source: Öko-Institut e.V.

Criteria for P&T Assessment

- Technology availability (needed R&D, development risks)
- Risks
 - Safety (new reactor types, various fuel compositions, regulations...)
 - Security (proliferation risks by access to weapons-usable materials)
 - Safeguards (new measures needed)
- Implementation period
- Effect on radioactive waste disposal (radiotoxicity vs. long-term safety, decay heat, volume)
- Overall energy production strategy (phase-out?)

Choices of Technology in P&T Fuel Cycles

Not available on industrial scale: **Reprocessing:**

- Pyroprocessing
- Hydroprocessing (e.g. PUREX)

Fuel:

- Mixed-Oxide Fuel (MOX) with increased MA content
- Inert-Matrix fuel (IMF) no Uranium
- Molten salt

Irradiation facility:

- Critical Fast Reactors (FR)
- Accelerator-driven systems (ADS)
- Molten-salt Reactors (MSR)

Modeling Goals and Challenge

P&T requires 5-10 irradiation cycles, depending on implementation path

- \Rightarrow analysis of different hypothetical scenarios
 - How long would the scenario last?
 - How many and what kind of facilities would be needed?
 - What are the actual effects on waste streams & disposal requirements?

Scenarios

BOKU

Scenario 1: FR (based on ASTRID)

- Hydrochemical reprocessing
- MOX fuel (MA enriched)

Scenario 2: ADS (based on EFIT)

- Inert matrix fuel (IMF)
- Pyrochemical reprocessing

Scenario 3: MSR (based on MOSART)

- Molten salt
- Pyroprocessing

Sources:GIF; www.bellona.org; www.duboichemicals.com

Fuel Composition in P&T Fuel Cycle

(U), Pu, MA fractions change with each irradiation cycle

- \Rightarrow Influence on reactor dynamics?
- \Rightarrow Adaption of reactor design?

Our assumption: element fraction constant - no adaption needed

Plutonium, Neptunium, Americium, and Curium Stockpile – which one is lacking in the end?

Model Assumptions

- All necessary technology available on industrial scale
- P&T only suitable for spent fuel elements, not for vitrified waste
- Transmutation efficiencies per element, not per isotope
- No detailed modeling of fission products (estimate based on cross sections)
- Facilities are operated total lifetime
- Radioactive decay / Uranium inventory is not considered

Starting Situation - German Inventory

Element (group)	Fraction	Inventory 2022
Total	100.00%	10,113.0 t
Uranium	94.27%	9,534.0 t
Plutonium	1.27%	128.6 t
Minor Actinides (Np, Am, Cm)	0.21%	21.1 t
Fission Products	4.04%	408.1 t

Inventory 2022 estimated based on data from 2020.

Scenarios & Facilities

Scenario 1: FR (based on ASTRID, 1200 MWth)

- max 8 facilities, 23 in total
- cycle length 11 years (hydroprocessing)
- total scenario length pprox 300 years

Scenario 2: ADS (based on EFIT, 400 MWth)

- 2 facilities, consecutively
- cycle length 7 years
- total scenario length \approx 90 years
- Scenario 3: MSR (based on MOSART, 2400 MWth)
 - 3 facilities at the same time
 - cycle length 1 year
 - total scenario length ≈ 55 years

Separated Plutonium Stockpile - FR

Stockpile of Transuranium Elements - FR

Separated Plutonium Stockpile - ADS

Stockpile of Transuranium Elements - ADS

Separated Plutonium Stockpile - MSR

Stockpile of Transuranium Elements - MSR

Additional Waste Streams

	FR	ADS	MSR
LLFP - Tc-99	+48%	+3%	+23%
LLFP - I-129	+63%	+3%	+27%
LLFP - Cs-135	+71%	+9%	+76%
HLW	2,300 m ³	7,400 m ³	7,350 m ³
Long-lived Waste	84,000 m ³	23,000 m ³	23,000 m ³
Dismantling	323,000 m ³	unknown	unkown

LLFP: Long-lived Fission Products HLW: High Level Waste Konrad Repository: 300,000 m³

Conclusion I - Simulation Results

- P&T requires long-term operation of several advanced nuclear facilities
- Amount of low and intermediate level waste (LILW) increases significantly
- Stockpiles of long-lived fission products increase substantially
- high level waste (HLW) repository is needed in any case
- Separated fissile material, especially Plutonium is present / left
- Unresolved safety issues (changing fuel composition)

Conclusion II

- Technology not ready (decades of R&D)
- Reactor models fit to German situation are lacking
- Model assumptions of uttermost importance
 Significant impact on results
 - \Rightarrow more data needed
- P&T scenarios postpone final disposal of HLW / closing of deep geological repository

Following a P&T path would be a nuclear program for many decades (or even centuries).

Thank you

Frieß, F., Arnold, N., Liebert, W., and Müllner, N.: Sicherheitstechnische Analyse und Risikobewertung von Konzepten zu Partitionierungs- und Transmutationsanlagen für hochradioaktive Abfälle, Wissenschaftliches Gutachten im Auftrag des Bundesamtes für die Sicherheit der nuklearen Entsorgung (BASE), Berlin, 280 pp.,urn:nbn:de:0221-2021030826033, März 2021.

The report includes an English summary.

University of Natural Resources and Life Sciences, Vienna Institute for Safety and Risk Sciences

Friederike Frieß, Wolfgang Liebert Dänenstraße 4, A-1190 Wien Tel: +43 1 47654-81821 Mail: friederike.friess@boku.ac.at www.boku.ac.at

🔀 🕃 🐼 🛍 🗭 🐭 🚱 🥥 📈 🧖 🔺 🗊 📮 🕥