

Supplement of

Transport in tight material enlightened by process tomography

Johannes Kulenkampff et al.

Correspondence to: Johannes Kulenkampff (j.kulenkampff@hzdr.de)

The copyright of individual parts of the supplement might differ from the article licence.

Transport in tight material enlightened by process tomography

Johannes Kulenkampff, Till Bollermann, Maria A. Cardenas Rivera, and Cornelius Fischer Institute of Resource Ecology – Reactive Transport, Helmholtz-Zentrum Dresden-Rossendorf contact: (j.kulenkampff@hzdr.de)

Relevance of laboratory results

Reliable and robust data basis,

but discrepancies to large scale.

Questions to be asked:

Permeability frequently increases with scale, why?

Is the experimental time scale appropriate?

Do we understand the processes on the pore scale?

Impact of heterogeneity

Transport in tight materials

Input-Output tests (Permeability, diffusion cells, BTCs)	Process tomography (PET-μCT)
Duration of tests	
Stability? Time expenses	Spatiotemporally resolved snapshots Prove of stability by observation Optimization of test procedure Instationary tests without signal at outlet
Spatial Representativity	
Intact samples preferred (biased selection of samples) Small samples preferred (plugs)	Applicabillity on disturbed samples - including heterogeneities and fractures Tomography on complete drill cores Information on REV size Identification of connected transport paths
Process understanding, modelling	
Bias by test method	Identification of process (advection, diffusion, interactions with matrix)

Benefits of Process Tomography

Illuminate spatiotemporal internal properties during the process

- Heterogeneity (e.g. preferential transport, reactive zones)
- Retention and storage
- Velocity or rate distributions

Downside:

- Experimental limitations
- Expensive (work and costs)

Principle of Process Tomography with GeoPET

Requisites

Fotos: Künzelmann (HZDR)

Plastic pressure vessel or cast in epoxy

Transparent for PET and CT max. p_c: 10 bar

Sample dimensions: d: 30..100 mm l: < 100 mm

Injection of tracer pulse into continuous flow of carrier solution.

constant flow: 1 µL/min ..1 mL/min

BTC from flow-through counter

Data: suite of PET frames (minimum frame rate 1 min, acquisition time hours to months) plus μCT image

tomographic reconstruction 4D image processing parameterization

Example for flow experiments

Bukov granite with fracture

Flow rate: 0.1 mL/min Carrier solution: 1 mMol KF Tracer: 1 mL [¹⁸F]KF

Kulenkampff, J.: Geophysical Research Abstracts, Vol. 20, EGU2018-8813-1, 2018. Fischer, C. et al.: Geophysical Research Abstracts, Vol. 21, EGU2019-13965, 2019.

Results from Flow Experiment

Internal and external BTCs Small scale dispersion Information on retardation Flow path distribution Velocity histogram Effective volume

Kulenkampff, J. et al.: Solid Earth 7, 1207-1215, 2016.

Diffusion Results

PET data

COMSOL best fit

Lippmann-Pipke, J. et al.: Computers and Geosciences, 101, 21-27, 2017

Achievements

- process identification and understanding
- images (affirmative or puzzling)
- permeability or diffusion coefficient (eventually as tensors)
- dispersivity
- internal propagation curve
- transport pathways
- velocity distribution
- effective volume
- heterogeneity
- scaling from mm to cm

Questions

- applicability for safety case
- how to parameterize (e.g. heterogeneity parameter)
- how to apply for upscaling

Acknowledgements

This research has received support by Bundesministerium für Bildung und Forschung BMBF and the Helmholtz Gemeinschaft (HGF) (grant no. 02NUK053B)

Bundesministerium für Wirtschaft und Energie BMWi (grant nos. 02E11748B and 02E11769B),

European Commission Horizon 2020 (grant nos. 662147 (Cebama) and 847593 (EURAD))

SPITZENFORSCHUNG FÜR

Bundesministerium für Bildung und Forschung

Member of the Helmholtz Association