Supplement of

Methods for safety-related weighting and comparative assessment in the site selection process (MABeSt)

Gerd Frieling et al.

Correspondence to: Gerd Frieling (gerd.frieling@bfe.bund.de)

The copyright of individual parts of the supplement might differ from the article licence.
Methods for safety-related weighting and comparative assessment in the site selection process

SafeND 2021, “Selecting a repository site”, 10.11.2021
Gerd Frieling¹,*, Ute Maurer-Rurack¹, Klaus Fischer-Appelt²,*, Thomas Beuth¹,*, Guido Bracke¹,*

¹ Federal Office for the Safety of Nuclear Waste Management (BASE)
² RWTH Aachen University, Chair for Repository Safety
* formerly at GRS gGmbH
Outline

1. Work steps according to the StandAG procedure
2. The MABeST project
3. Short introduction to the decision model and MCDM methods
4. Application of the methods in the site selection procedure
5. Summary and Outlook
Work steps according to the StandAG1 procedure

\begin{itemize}
\item Exclusion Criteria
\item Minimum requirements
\item Geoscientific weighting criteria
\end{itemize}

+ \begin{itemize}
\item Preliminary safety analysis
\item Planning scientific weighting criteria
\end{itemize}

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>§13 – Determination of sub-areas (BGE2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>§14 – Determination of siting regions for surface exploration (BGE)</td>
</tr>
<tr>
<td></td>
<td>§15 – Decision on surface exploration and exploration programs (BASE3, BMU4, German Federal Parliament and the Federal Council)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2</th>
<th>§16 – Surface exploration and proposal for underground exploration (BGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Surface exploration of the siting regions, socio-economic potential</td>
</tr>
<tr>
<td></td>
<td>§17 – Decision on underground exploration and exploration programs (BASE, BMU, German Federal Parliament and the Federal Council)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 3</th>
<th>§18 – Underground exploration (BGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Underground exploration of the locations, application of the assessment criteria, environmental impact assessment (UVP), comparative assessment of the identified sites</td>
</tr>
<tr>
<td></td>
<td>§19 – Final site comparison and site recommendation (BASE, BMU)</td>
</tr>
<tr>
<td></td>
<td>§20 – Site decision by the German Federal Parliament and the Federal Council</td>
</tr>
</tbody>
</table>

1StandAG – Law on the search and selection of a site for a repository for high-level radioactive waste /STA 17/
2BGE – Federal Company for Radioactive Waste Disposal
3BASE – Federal Office for the Safety of Nuclear Waste Management
4BMU – Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
The MABeST project

BASE research agenda 2020: „The StandAG does not specify how these comparisons and evaluations are to be carried out methodically, how uncertainties due to different data availability, quality and comparability are to be dealt with, how different data may be weighted and how host rock-specific and host rock-independent data are to be considered.“ “For the aforementioned evaluations and comparisons, existing methods must be checked and, if necessary, further developed.”

Research project MABeST:
- **AP 1:**
 - Identification of work steps in the StandAG in which safety-related weighting and comparative assessment must be carried out and
 - which related challenges arise in the work steps.
- **AP 2:**
 - Literature search on German and international publications with regard to weighting and comparative assessment methods that were applied to a site selection of a repository and other disciplines.
 - Description and summary of the identified methods.

Evaluation of the applicability of the methods for the identified work steps in the StandAG.

Gerd Frieling, SafeND, 10.11.21

Literature research to identify suitable methods

1. /BOL 11/ (EUGENIA) emphasizes that: “... the transfer of the concepts and procedures for a repository site selection developed in other countries to Germany is only possible to a limited extent.”

2. Methods from the decision theory, especially Multi-Criteria Decision Making/Aid (MCDM) tools are applicable for (all) types of decision-making problems, also for a repository site selection.
 - MCDM deals with structuring and solving decision and planning problems based on several criteria.
Decision model

Problem formulation (specification of the goals)
- Building the model
 - Identification of criteria
 - Data acquisition for criteria (cardinal, ordinal)
 - Identification of preferences and weighting of the criteria
 - Aggregation of information (MCDM-Methods)
 - Ranking feasible alternatives
 - Uncertainty and sensitivity analysis
 - Final decision
Hierarchy of MCDM methods (-categories)

Multiple Criteria Decision Making/Aid (MCDM/A)

- Classical Methods (american school)
 - Weighted sum methods (SAW or WLC)
 - MAUT, SMART
 - TOPSIS
 - Analytic Hierarchy Process (AHP)
 - Analytic Network Process (ANP)

- Outranking methods (european school)
 - PROMETHEE
 - ELECTRE

- Fuzzy Sets
 - Fuzzy-AHP
 - Fuzzy-Promethee

Multiple Attribute Decision Making (MADM/A)

Multiple Objective Decision Making (MODM)
Applicability of the methods for the site selection procedure

- **Step 1 (screening):** Find *areas with favorable geological conditions* (alternatives). Delimitation of large areas, e.g. sub-regions to siting regions and finally sites.

 ➢ Method(s) for phase 1 and 2 – Spatial MCDM (GIS + MADM)

- **Step 2 (evaluation):** Selection of the "best possible" alternative(s).
 Comparative assessment of discrete locations.

 ➢ Method for phase 3 (2) – Outranking methods
Method(s) for phase 1 and 2 – Spatial MCDA (GIS + MADM)

- Spatial MCDA can also be called “Overlay Analysis”, that combines several layers (geographical data) with the decision-maker’s preferences to a “decision map”.

Problem definition, Identification of criteria, Data acquisition

- Standardization of data
 - Continuous data
 - Categorial data

Determination of criteria weights (e.g. using AHP\(^1\))

Integration of GIS and MADM (e.g. WLC\(^2\) or OWA\(^3\))

Suitability Maps

\(^1\)Analytic Hierarchy Process (AHP) \(^2\)Weighted Linear Combination (WLC) \(^3\)Ordered Weighted Averaging (OWA)

modified after https://www.researchgate.net/publication/280768547_105937jaes12-4938_GIS_based_multi-criteria_decision_analysis_for_industrial_site_selection_The_state_of_the_art

Gerd Frielig, SafeND, 10.11.21
A hierarchical goal system

- Structuring of the problem based on the goal system.
- Support for weighting the criteria (AHP or ANP method)
- Evaluation or aggregation on different hierarchical levels.

→ e.g. EndlSiAnfV

\[1\text{EndlSiAnfV} \text{– Disposal Safety Requirements Ordinance}
\text{EndlSiUntV} \text{– Disposal Safety Analysis Ordinance.}\]
Method for phase 3 (2) – Outranking methods

- Outranking methods compare the alternatives **pairwise** for each criterion, finding the strength of preferring one over the other.
- **Low compensation**: an aggregation of the criteria data is only partially necessary.
- Outranking methods were developed to optimize the disadvantages of the classic methods. The decision maker can have “fuzzy” preferences (preference functions).
- For example: **PROMETHEE (Preference Ranking Organisation Method for Enrichment Evaluation)** method.

![Graph showing preference grading and different levels of preference: indifference, weak preference, strong preference.](image-url)
PROMETHEE results

- Outranking flows

- Preference, Indifference, Incomparability

http://mlwiki.org/index.php/PROMETHEE

Gerd Frieling, SafeND, 10.11.21
Consideration of uncertainties in MADM methods

A basic distinction is made between two general types of uncertainty:

Epistemic (internal uncertainties): uncertainties that arise during the creation of the decision model, e.g. "subjective" survey of preferences and criteria weights.

Aleatory (external uncertainties): uncertainties resulting from environmental conditions, including the quality of the input data (e.g. measurement errors), future developments of the environment (Scenario analysis).

There are different approaches to dealing with uncertainties in MCDA methods:

- Preference functions
- Fuzzy theory, Fuzzy sets
- Bayesian belief nets

> The effects of the various criteria and environmental conditions on the results can/must be examined by **sensitivity analysis** (e.g. check robustness of the ranking).
Summary

Phase 1 and 2 StandAG: Delimitation of large areas
- The delimitation of large areas is mainly based on geoscientific weighting criteria.
- First approaches how to aggregate the geoscientific weighting criteria were examined in the RESUS\(^1\) project.

Phase 3 (2): Comparison of individual regions/sites or respectively repository systems
- For a comparison of repository systems, the geoscientific weighting criteria are maybe not suitable.
- The preliminary safety analysis can only be applied to a limited extent, if several sites meet the regulatory requirements, they are deemed to be eligible for approval.
- The VerSi\(^2\) 1-2 (3) project provides a methodology for comparing repository systems on the basis of a robustness assessment.

- For phase 1 and 2 – Spatial MADM (e.g. WLC, OWA, AHP) and
- for phase 3 (2) – Outranking methods (e.g. PROMETHEE, ELECTRE) appear to be suitable.
- The consideration of uncertainties through fuzzy methods needs to be further examined.

\(^1\)https://www.grs.de/publikationen/grs-567
\(^2\)https://www.researchgate.net/publication/326345410_Weiterentwicklung_einer_Methode_zum_Vergleich_von_Endlagerstandorten_in_unterschiedlichen_Wirtsgesteinsformationen

Gerd Frieling, SafeND, 10.11.21
Final assessment and Outlook

- MADM helps to achieve comprehensible and transparent decision-making. It should be understood as a decision “support” tool, not decision make.

- The applicability and suitability of the methods mentioned should be tested on a specific decision problem.

- A combination of MADM methods and the verbal argumentative method should be investigated.

- A certain amount of “Aggregation” of the data is always necessary, also in the verbal argumentative method. A compensation of information cannot completely be avoided.
Thank you for your Attention!

MABeST Report download:
https://www.base.bund.de/SharedDocs/Downloads/ BASE/DE/fachinfo/fa/MaBest_Abschlussbericht_202 0.pdf;jsessionid=30D37C6891B2862671FC2FF79F10DC 61.1_cid365?__blob=publicationFile&v=4

Gerd Frieling, SafeND, 10.11.21
Literature

- [MABeST Report] MABeST Report:
 https://www.base.bund.de/SharedDocs/Downloads/BASE/DE/fachinfo/fa/MaBest_Abschlussbericht_2020.pdf;jsessionid=30D37C6891B2862671FC2FF79F10DC61.1_cid365?__blob=publicationFile&v=4
Elements of the decision problem

- **Laws and guidelines** (e.g. StandAG, Governmental directives (EndlSiAnfV, EndlSiUntV))
 - Provide the general framework (e.g. definition of assessment criteria)
- **Actors (scientists, stakeholders, public)**
 - Different preferences and goals
- **Goal system (main and secondary goals)**
 - Conflicts of objectives, e.g. retrievability vs. long-term safety
- **Geological boundary conditions**
 - e.g. rock salt in steep (diapir) or flat stratification
- **Various repository systems (host rock-specific)**
 - containment-providing rock zone, engineered barriers system, disposal in drifts or boreholes
- **Environmental conditions (FEP and Scenario development)**
 - e.g. marine transgressions, glaciation
- **Evaluation criteria**
 - Criteria data/values (heterogeneous data situation, cardinal, ordinal), weighting
- **Uncertainties (developing)**
 - Uncertain Data, preferences (weighting of criteria)
Schematic view of the work steps according to StandAG

- Geologic search area
- Sub-areas
- Siting regions
- Sites
- Final site

- **Weighing/Weighting:** comparative consideration and checking of advantages and disadvantages
- **Comparative assessment:** choosing the "best" or most preferred option from a number of available alternatives

Gerd Frieling, SafeND, 10.11.21
Decision model

Problem formulation (specification of the goals)

Building the model

Identification of criteria

Data acquisition for criteria (cardinal, ordinal)

Identification of preferences and weighting of the criteria

Aggregation of information (MCDM-Methods)

Ranking feasible alternatives

Uncertainty and sensitivity analysis

Final decision

Gerd Frielings, SafeND, 10.11.21
Aggregation of information - Decision matrix

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung</td>
<td>0,1</td>
<td>0,3</td>
<td>0,1</td>
<td>0,2</td>
<td>0,3</td>
</tr>
<tr>
<td>Alternative A</td>
<td>33</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>0,6</td>
</tr>
<tr>
<td>Alternative B</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>25</td>
<td>1,05</td>
</tr>
<tr>
<td>Alternative C</td>
<td>15</td>
<td>5</td>
<td>2</td>
<td>28</td>
<td>0,4</td>
</tr>
<tr>
<td>Alternative D</td>
<td>29</td>
<td>0,5</td>
<td>6</td>
<td>12</td>
<td>0,2</td>
</tr>
<tr>
<td>Alternative E</td>
<td>10</td>
<td>11</td>
<td>22</td>
<td>7</td>
<td>0,05</td>
</tr>
</tbody>
</table>
Fuzzy theorie

Classic set theory

- good
- bad

Fuzzy set theorie

- good
- less good
- medium
- less bad
- bad

Linguistic uncertainty

Modified after https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00011797/IBzWI_2007-03.pdf