Compaction of crushed salt for safe containment – a summary of the KOMPASS projects

Larissa Friedenberg et al.

Correspondence to: Larissa Friedenberg (larissa.friedenberg@grs.de)

The copyright of individual parts of the supplement might differ from the article licence.
Compaction of Crushed Salt for Safe Containment

A summary of the KOMPASS projects

L. Friedenberg, O. Czaikowski, K. Jantschik, J. Wolf
Ch. Lerch, M. Rahmig, N. Müller-Hoeppe
J. Bartol
T. Popp, Ch. Lüdeling, O. Rabbel, D. Naumann, Ch. Rölke
B. Reedlunn, J. Bean, J. Coulibaly, M. Mills, E. Matteo
U. Düsterloh, S. Lerche, N. Saruulbayar
Ch. Spiers, H. J. P. de Bresser, S. Hangx, B. van Oosterhout
Outline

1. The Origin
2. Evolution of the KOMPASS projects
3. Experimental studies
4. Microstructural investigations
5. Numerical modelling
6. Conclusion & outlook
1. The Origin

- Investigations on crushed salt have been performed during the last decades
 - Focus on the mechanical evolution
 - Crushed salt as stabilization for the host rock

- Important paradigm shift in repository design with the Site Selection Act (2017)
 - Shift from limited release to safe containment
 - Crushed salt as geotechnical barrier
 - Focus on the evolution of hydraulic properties

Ref: Korthaus, Callahan, Hansen, Hunsche, Spiers, Stührenberg, WIPP Site, Asse mine, Gorlegebn mine…

DAEF state-of-the-art report (2017)

Need for future R&D work
2. Evolution of the KOMPASS projects

KOMPASS-I ➔ KOMPASS-II ➔ MEASURES

09/2018 – 08/2020 ➔ 07/2021 – 06/2023 ➔ XX/2024

➢ Improve scientific database behind using crushed salt for long-term isolation of high-level nuclear waste
➢ Improve prediction of crushed salt compaction process
➢ Work with relevance for long-term safety of HLW repository in rock salt
Outline

1. The Origin
2. Evolution of the KOMPASS projects
3. Experimental studies
4. Microstructural investigations
5. Numerical modelling
6. Conclusion & outlook
3. Experimental studies – The KOMPASS reference material

Aim: Choice of an easy available & permanent reproducible crushed salt material for generic investigations (also beyond the projects)

➢ Staßfurt-sequence in a bedded Zechstein
➢ Optimized grain size distribution

![Graph showing grain size distribution and volume fraction vs. grain size](image)

Tab. 4.1 Grain size fractions in the raw salt material and the optimized mixture

<table>
<thead>
<tr>
<th>Material-fraction</th>
<th>Grain size distribution d_{38}-d_{95} [mm]</th>
<th>d_{50} [mm]</th>
<th>m [-]</th>
<th>Optimized mixture [wt.-%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überkorn (ÜK) – oversized grains</td>
<td>3 - 10</td>
<td>6.03</td>
<td>3.44</td>
<td>-</td>
</tr>
<tr>
<td>Band 6 (B6) – production line 6</td>
<td>0.4 - 4</td>
<td>1.90</td>
<td>2.06</td>
<td>65.6</td>
</tr>
<tr>
<td>Band 8 (B8) – production line 8</td>
<td>0.1 -1</td>
<td>0.49</td>
<td>1.58</td>
<td>20.2</td>
</tr>
<tr>
<td>Feinsalz (FS) – fine salt</td>
<td>0.03 -0.3</td>
<td>0.14</td>
<td>2.01</td>
<td>14.2</td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fig. 4.3 Salt grain fractions and grain size distributions

[KOMPASS-I, 2020]
3. Experimental studies – Pre-compaction methods

Aim: Produce samples for long-term compaction tests

➢ Low initial porosity (15 – 20 %)
➢ Natural grain structure
➢ Short-term, but under in-situ relevant stress/strain

TUC:

BGR:

IfG:

Friction effect on compaction:
- End effects bottom/top: higher
- Center of the cylinder is higher consolidated than the outsides

KOMPASS projects, L. Friedenberg (GRS), SafeND 2023, Berlin
3. Experimental studies – Long-term compaction tests

Aim: Systematically investigation of crushed salt compaction behaviour
➢ Addressing influencing factors

TUC test program:

New IfG crushed salt compaction cell:

[KOMPASS-II, in preparation]
3. Experimental studies – Long-term compaction tests

Aim: Systematically investigation of crushed salt compaction behaviour
 ➢ Addressing influencing factors

BGR test program:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moisture</th>
<th>Temperature</th>
<th>Duration</th>
<th>Pressure steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK-038</td>
<td>0.1 w.-%</td>
<td>50 °C</td>
<td>34 d</td>
<td>5, 10 MPa</td>
</tr>
<tr>
<td>TK-041</td>
<td>0.35 w.-%</td>
<td>50 °C</td>
<td>145 d</td>
<td>5, 10, 15, 20 MPa</td>
</tr>
<tr>
<td>TK-042</td>
<td>0.35 w.-%</td>
<td>50 °C</td>
<td>72 d</td>
<td>10, 15 MPa</td>
</tr>
<tr>
<td>TK-044</td>
<td>0.5 w.-%</td>
<td>33 °C</td>
<td>144 d</td>
<td>4, 8, 12, 16, 20 MPa</td>
</tr>
<tr>
<td>TK-045</td>
<td>0.5 w.-%</td>
<td>50 °C</td>
<td>220 d</td>
<td>4, 8, 20 MPa</td>
</tr>
</tbody>
</table>

[grs triaxial compaction tests:]

<table>
<thead>
<tr>
<th></th>
<th>BGR sample</th>
<th>IfG sample</th>
<th>TUC sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. strain [%]</td>
<td>4 – 7</td>
<td>8 – 11</td>
<td>9 – 14</td>
</tr>
<tr>
<td>Porosity [%]</td>
<td>6 – 9</td>
<td>4 – 8</td>
<td>4 – 9</td>
</tr>
<tr>
<td>Permeability [m²]</td>
<td>5.4*10⁻¹⁶</td>
<td>Gas tight</td>
<td>Permeable</td>
</tr>
</tbody>
</table>

[KOMPASS-II, in preparation]

KOMPASS projects, L. Friedenberg (GRS), SafeND 2023, Berlin
3. Experimental studies – In-situ experiment

Aim: Test the KOMPASS reference material under in-situ conditions

➢ Collaboration with the SAVER project (TU BAF)
➢ KOMPASS backfill body in the Sondershausen mine

KOMPASS reference material

Dry crushed salt

[KOMPASS-II, in preparation]
4. Microstructural investigations

Aim: Reduce the uncertainties regarding the actual contribution of microstructural deformation mechanism to the overall compaction

- Establishment and improvement of microstructural investigation methods
- Relating the abundancy of indicators for microscale deformation mechanism to compaction conditions
- Focus on comparison of different pre-compaction methods
- Investigation of different influencing factors on the microscale deformation mechanism (grain size, humidity)

![Image a.](684/OED01/Dry "Big Cell" Block)
![Image b.](684/OED04/Wet 3 "Big Cell" Block)

[KOMPASS-II, in preparation]
5. Numerical modelling

Aim: Improve/develop models for describing the mechanical/hydraulic property changes of crushed salt compaction over a wide range of influencing parameter

- Application of various constitutive models
- Benchmark calculations against laboratory experiments
- Application of a virtual demonstrator
- Development/optimization of constitutive models

[KOMPASS-II, in preparation]
Outline

1. The Origin
2. Evolution of the KOMPASS projects
3. Experimental studies
4. Microstructural investigations
5. Numerical modelling

6. Conclusion & outlook
6. Conclusion & outlook

The KOMPASS projects contribute to the improvement of the scientific knowledge for using crushed salt as backfill for HLW containment.

B U T . . . The KOMPASS projects also identified some important shortcomings!

- Laboratory program is not completed
- Effects of laboratory shortcomings has to be addressed
- Hydraulic properties of crushed salt need to be considered
- Need for optical experiments on the activation and quantification of micro deformation mechanism
- Constitutive models are not calibrated in its entireness
- Update the permeability reduction with time for the long-term safety analysis

To be continued... MEASURES (coming 2024)
THANKS TO THE KOMPASS-FAMILY!

FKZ: 02 E 11951A-D

THANKS FOR YOUR ATTENTION!
