

Supplement of

A long-running in situ experiment in clay: 12 years of the Bitumen–Nitrate– Clay interaction experiment at Mont Terri rock laboratory

Katrien Hendrix et al.

Correspondence to: Katrien Hendrix (katrien.hendrix@sckcen.be)

The copyright of individual parts of the supplement might differ from the article licence.

Federal Office for the Safety of Nuclear Waste Management

A long running in-situ experiment in clay: **12 years of the Bitumen-Nitrate-Clay** interaction experiment at Mont Terri rock laboratory in Switzerland

Katrien Hendrix, Nele Bleyen, Kristel Mijnendonckx, Veerle Van Gompel, Achim Albrecht, Yannick Linard, Pierre De Cannière, Maryna Surkova, Charles Wittebroodt, Joe Small, Torben Weyand, Michael Jendras and Elie Valcke

SafeND 2023

Berlin – 14/09/2023

BN: Bitumen-Nitrate-Clay interaction experiment one of the 28 most important and longest-running experiments at Mont Terri rock laboratory

Nitrate plume from bituminized waste => possible perturbations in the near field

Nitrate perturbations studied in BN

scit cen | SCK CEN/56735743

4 ISC: Restricted

sck cen sck cen/56735743 Bleyen et al. (2017)

sck cen sck cen/56735743 Bleyen et al. (2017)

sck cen sck cen/56735743 Bleyen et al. (2017)

ISC: Restricted

sck cen

sck cen

ISC: Restricted

sckcen

Timeline of injections

	<mark>2</mark> 011 - 2019:	2019 – 2023:
llay		
nus C	Interval 3: injection of nitrate	Interval 3: selenate, selenate + nitrate
Opali	Interval 2: injection of nitrate + acetate	Interval 2: selenate (ongoing)
	Interval 1: Injection of nitrate, nitrate + H ₂	Interval 1: selenate (ongoing)

Nitrate injection tests

sck cen

Nitrate reduction

sck cen

SCK CEN/56735743

- Slow nitrate decrease: mainly diffusion
- Very slow microbial nitrate reduction by clay electron donors: denitrification
- Shift in population towards denitrifiers that are organotrophs

Possible e⁻ donors:

- Most likely: dissolved organic matter (DOM)
- Pyrite FeS₂
- Fe²⁺ containing minerals

100%

50%

0%

90

days days days

0.7

531

Abundancy

Brevundimonas

Pseudomonas

Nitrate reduction with acetate as external electron donor

- 1-2 days lag phase
- Fast microbial nitrate reduction \rightarrow mainly NO₂⁻ production with ~10% denitrification to N₂

 nitrate reducers

Acidovorax: can use Fe(II), but also

acetate as electron donor

Nitrate reduction with H₂ as external electron donor

- 7-10 days lag phase
- Fast nitrate and $pH_2 \downarrow$ due to reduction of NO_3^- by $H_2 \rightarrow NO_2^-$, NH_4^+ , N_2
- Production of ammonium can be biotic or abiotic (Fe surface-catalyzed)

Clostridium

Actinomycetales

SCI: CEN | SCK CEN/56735743

Selenate (+ nitrate) injection tests

sck cen

- Long-term: slower selenate removal rate in presence of nitrate, faster in absence of nitrate
- Nitrate suppressed the microbial reduction of selenate

Measurements performed at BRGM by Catherine Lerouge

Fate of selenate in the BN borehole

Solid phase characterized by SEM-EDX and laser ablation coupled with QQQ-ICP-MS

- Selenium was mostly found in pyrite and correlated with sulfur in the sample
- Likely reduced Se species on the solid phase

19 ISC: Restricted

BN experiment – what have we learned

sck cen

SCICCEN | SCK CEN/56735743

Conclusions: fate of selenate

Modelling in PhreeqC gives good fit

SCK CEN/56735743

sck cen

Slow microbial reaction

 Limited oxidation of clay components expected

> Selenite is formed to some extend

 Selenium species are found on the solid phase, associated with pyrite

Stimulation of microbial activity

- With selenate: sulfate reducing microbes can also reduce selenate, however slowly
- Once nitrate is introduced: shift back to denitrifiers

Further reading

- Bleyen, N., Smets, S., Small, J. *et al.* (2017) Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland). *Swiss Journal of Geosciences*
- Nussbaum, C., Bernier, F., Bleyen, N., *et al.* (2023). 25 years of cross-fertilization between HADES and Mont Terri rock laboratory. *Geological Society, London, Special Publications*
- Bleyen, N., Smets, S., Small, J., *et al.* (2018). Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland). *Mont Terri Rock Laboratory, 20 Years: Two Decades of Research and Experimentation on Claystones for Geological Disposal of Radioactive Waste*
- Bleyen, N., Small, J. S., Mijnendonckx, K., *et. al.* (2021). Ex and in situ reactivity and sorption of selenium in Opalinus clay in the presence of a selenium reducing microbial community. *Minerals*
- Bleyen N., Albrecht A., De Cannière P., et.al. (2019). Non-destructive on-line and long-term monitoring of in situ nitrate and nitrite reactivity in a clay environment at increasing turbidity. Applied Geochemistry

Copyright © SCK CEN

PLEASE NOTE!

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN. If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN

Belgian Nuclear Research Centre

Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS Operational Office: Boeretang 200 – BE-2400 MOL