

Supplement of

Hydride reorientation in fuel cladding under interim storage conditions with low hoop stress

Benedict Bongartz et al.

Correspondence to: Benedict Bongartz (bongartz@iw.uni-hannover.de)

The copyright of individual parts of the supplement might differ from the article licence.

Hydride reorientation in fuel cladding under interim storage conditions with low hoop stress

KEK-Initiative – "Kompetenzerhalt in der Kerntechnik"

Funded by:

Federal Ministry for Economic Affairs and Climate Action Lead partner:

GRS

global research for safety

14 September 2023

Interim storage: Licenced for 40 years as of first packaging / storage of cask, e.g.1994 in Gorleben

StandAG: Final depository found by 2031 !Without permits or construction!

Extended interim storage

Guideline by ESK

Need verification of cask and inventory safety after licensed timeframe, including:

- Physical framework
- Material behaviour
- Aging
- Inspection of not accessible components like cladding tubes, spacers etc.

Unknowns and uncertainties with the unresolved final storage situation

Daum, R. S.; Majumdar, S.; Liu, Y.; Billone, C.; 2006. Radialhydride Embrittlement of High-burnup Zircaloy-4 Fuel Cladding. *Journal of Nuclear Science and Technology*, 43:9, 1054-1067. ISSN 0022-3131

Main considerations for extended interim storage:

- Castor storage containers likely not suitable for final storage
 - Opening of containers
 - Unknown load limits for fuel handling
- Mechanical properties of the stored fuel assemblies are in question
 - Quantity, type and orientation of hydrides
 - Changes due to creep by swelling and gas emission
 - Combination of these factors with changes by neutron flux, hardening, embrittlement

Research field hydrides

Fig. 5. Reorientation of hydrides in the Zr–2.5Nb tube with time of application of the stress intensity factor of $18.4 \sqrt{m}$ MPa on the CB specimens during the thermal cycle treatment shown in Fig. 3: (a) at the beginning of the thermal cycle (point A in Fig. 3), (b) at the end of the holding period at the peak temperature of $380 \,^{\circ}$ C (point B in Fig. 3) and (c) at the test temperature of $250 \,^{\circ}$ C (point C in Fig. 3).

Source: KIM, Y.S., S.B. AHN, Y.M. CHEONG, 2007. Precipitation of crack tip hydrides in zirconium alloys [online]. *Journal of Alloys and Compounds*, 429(1-2), 221-226. ISSN 09258388

© Leibniz Universität Hannover, IW, Prof. Dr.-Ing. Hans Jürgen Maier, Dipl.-Ing. Benedict Bongartz Page 4 | 14 September 2022

Stress induced hydride redistribution/-orientation

- Load switch from compressive to tensile stress in cladding
- Hydrogen solved interstitially (partially with T)
- Pressure from the inside causes tensile stresses in cladding
 - Tensile stresses lead to decrease of distance between circumferential lattice planes less energy available
 - Decrease promotes precipitation in radial direction
 - becomes favourable direction
- Hydrogen diffuses along stress and temperature gradients
- Diffusion might lead to prolonged hydride chains across wall

Previous investigations: high hydrogen content

Source:

KIM, Y.-J.; Kook, D.-H.; Kim., T.-H.; Kim, J.-S.: Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation. *Journal of Nuclear Science and Technology*, 52(5), 717-727, 2015. DOI: 10.1080/00223131.2014.978829

Source:

CHU, H. C.; WU, S. K.; KUO, R. C.: Hydride reorientation in Zircaloy-4 cladding. *Journal of Nuclear Materials*, 373(1-3), 319-327, 2008. DOI: 10.1016/j.jnucmat.2007.06.012

© Leibniz Universität Hannover, IW, Prof. Dr.-Ing. Hans Jürgen Maier, Dipl.-Ing. Benedict Bongartz **Page 5** | 14 September 2022

Reorientation parameters

- Kim:
 - Hydride content: ~ 300 ppmw
 - Stress: 50 90 MPa
 - Cooling rate: ~ 0.5 K/min
- Chu:
 - Hydride content: ~ 320 ppmw
 - Stress: 160 MPa
 - Cooling rate: ~ 1 K/min
 - Cycling 400 °C 170 °C
 0 / 1 / 4 / 12 Cycles

Source:

KIM, Y.-J.; Kook, D.-H.; Kim., T.-H.; Kim, J.-S.: Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation. *Journal of Nuclear Science and Technology*, 52(5), 717-727, 2015. DOI: 10.1080/00223131.2014.978829

Nu	umber of thermal cycles (Annealed a	t 400°C under hoop stress of 160 MI	Pa)
0 (As-hydrided)	1 cycle	4 cycles	12 cycles
Courses			

CHU, H. C.; WU, S. K.; KUO, R. C.: Hydride reorientation in Zircaloy-4 cladding. *Journal of Nuclear Materials*, 373(1-3), 319-327, 2008. DOI: 10.1016/j.jnucmat.2007.06.012

© Leibniz Universität Hannover, IW, Prof. Dr.-Ing. Hans Jürgen Maier, Dipl.-Ing. Benedict Bongartz **Page 6** | 14 September 2022

Reorientation parameters

- Kim:
 - Hydride content: ~ 137 ppmw
 - Stress: 150 MPa
 - Cooling rate: ~ 0.5 K/min
- Chu:
 - Hydride content: ~ 130 ppmw
 - Stress: 160 MPa
 - Cooling rate: ~ 1 K/min
 - Cycling 400 °C 170 °C

- H Hydrogen
- Zirconium hydride
- Secondary precipitate

Source:

KAUFHOLZ, P.; STUKE, M.; BOLDT, F.; PÉRIDIS, M.: Influence of kinetic effects on terminal solid solubility of hydrogen in zirconium alloys. *Journal of Nuclear Materials*, 510, 277-281, 2018. DOI: 10.1016/j.jnucmat.2018.08.011

- Supersaturation -> precipitation
- Growth of hydrides

• Slow cooling with hydrides:

- Migration to existing hydrides
- Nucleation at existing hydrides
 - Growth of circumferential hydrides

• Slow cooling without hydrides:

- Migration of hydrogen
- Nucleation at lattice anomalies
- Hydride growth

Current approach

σ _{hoop} in MPa	H₂- content in wppm	Cooling rate					
	100	C					
20	200	4 K/h	4 K/h	× ·		,	I
	300						
	100	4 K/h		_C	Ę	ſ	, at
06	200		3 K/I	2 K/I	1 K/I	200 h 400 °C 1 K/I	
	300						
_	100	4 K/h		_C	-C	-C	→ ^a t
110	200		3 K/	2 K/I	1 K/I	200 h 400 °C 1 K/I	
	300						
	100	Ŀ	Ę	-C	-C	r ∧ at	
130	200	4 K	3 K/I	2 K/I	N N	h 00 0 °0 1 K/1	
	300	•			、 	, 40 ,	
	100	ے	ے	ے	<u>ح</u>	at م	
150	200	4 K	3 K/	2 K	X X	h 00 0 °0 /X 1	
	300	N			,	2(40	

© Leibniz Universität Hannover, IW, Prof. Dr.-Ing. Hans Jürgen Maier, Dipl.-Ing. Benedict Bongartz **Page 8** | 14 September 2022

Mag.: 100x Detector: QBSD

Hydride redistribution/-orientation

- Primarily circumf. hydrides
- Small amount of radial hydrides
- Interconnection between radial and circumf.

From Literature

- Primarily circumferential hydrides
- Small amount of radial hydrides
- Origin of radial hydrides at circumf. hydrides

Source:

KIM, Y.-J.; Kook, D.-H.; Kim., T.-H.; Kim, J.-S.: Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation. *Journal of Nuclear Science and Technology*, 52(5), 717-727, 2015. DOI: 10.1080/00223131.2014.978829

200 um

Low hydrogen content

Findings for low hydrogen:

- Stress between 70 90 MPa has low influence on reorientation
- Very high reorientation factors even with "high" cooling rates
- Overall high influence of H-content on reorientation factor
- Threshold for reorientation way below
 70 MPa (solubility hysteresis)

cooling

© Leibniz Universität Hannover, IW, Prof. Dr.-Ing. Hans Jürgen Maier, Dipl.-Ing. Benedict Bongartz **Page 11** | 14 September 2022

Ramifications:

For handling:

- Mechanical properties are to be tested
- New alloys which are designed for low H-content need to be tested for similar behaviour
- Low burnup rods are prone to this behaviour
 - Older fuels and VVER

For conditioning:

- Multi barrier system should be stabilised
 - Integrity of fuel rods
- Planning of conditioning and decommission needs reliable information for fuel properties
 - for western designs as well as VVER

Conclusions:

- Cooling rate has low influence on reorientation
- Reorientation is highly dependent on H-content
- Hypothesis by Kaufholz et al. validated
- Low contents lead to low precipitation temperatures
- Threshold for reorientation way below 70 MPa
 - Calculated around 52 MPa
- Hydrides through the wall are possible

Hydride reorientation in fuel cladding under interim storage conditions with low hoop stress

KEK-Initiative – "Kompetenzerhalt in der Kerntechnik"

Funded by:

Federal Ministry for Economic Affairs and Climate Action Lead partner:

GRS

global research for safety

14 September 2023

