

Supplement of

Antineutrino detection concepts for safeguarding spent nuclear fuel

Yan-Jie Schnellbach et al.

Correspondence to: Yan-Jie Schnellbach (schnellbach@nvd.rwth-aachen.de)

The copyright of individual parts of the supplement might differ from the article licence.

ANTINEUTRINO DETECTOR CONCEPTS FOR SAFEGUARDS MONITORING OF SPENT NUCLEAR FUEL

Yan-Jie Schnellbach¹, Thomas Radermacher¹, Irmgard Niemeyer², Stefan Roth¹, and Malte Göttsche¹ ¹RWTH Aachen, ²FZ Jülich

schnellbach@nvd.rwth-aachen.de

safeND 2023: Interdisciplinary Research Symposium on the Safety of Nuclear Fuel Disposal Practises Berlin | 13th September 2023

- Spent Nuclear Fuel (SNF) produced by reactors
 - Total global SNF: ~300,000 t HM* + ~7,000 t HM annually
- Discharged SNF after refuelling goes to:
 - Spent fuel ponds (several years)
 - Interim storage facilities (several decades) or reprocessing
 - Ultimately: geological repository (none yet – Onkalo starting '25, ~100 years operation)
- Even without operating reactors:

2

- Decades to centuries of actively managing SNF

Fuel assembly containing SNF being loaded into a cask https://www.gns.de/language=de/21562/behaelterbeladung

- SNF requires safeguards:
 - Mostly ²³⁸U (93-96%), but also: <1% ²³⁵U, ~1% Pu
 - \rightarrow interim storage & final disposal subject to safeguards
- Current safeguards often rely on Continuity of Knowledge (CoK)
 - Nuclear material accountancy

3

- Containment/Surveillance (C/S)
- Design information verification (DIV)
- Declarations verified by regular inspections

Material	In SNF
²³⁸ U	93-96%
²³⁵ U	<1%
Fission fragments (e.g. ⁹⁰ Sr)	3-5%
Pu	~1%
Minor actinides	<1%

ZWILAG Zwischenlager Würenlingen AG

Safeguards R&D for SNF Storage

- Safeguards impact on facility operation
 - Inspections require access and radiation exposure
 - Re-establishing CoK ("re-verification") in case of discrepancies or incident requires huge effort & time
- Safeguards R&D aims
 - Lessening operational burden (automated/remote systems)
 - Complement existing methods
- Under development for interim storage facilities
 - Improved C/S techniques (e.g. "laser curtains")
 - Muon tomography of casks (measuring content density)
- Under development for geological repositories
 - Muon tomography for design information verification

V. Sequeira et al., "Laser Curtain for Containment and Tracking". Proceedings of the INMM & ESARDA Meeting 2021.

D. Ancius et al., "Muon tomography for dual purpose casks (MUTOMCA) project". Proceedings of the INMM & ESARDA Meeting 2021.

Antineutrinos as Reactor Safeguards Tool

- Concept originally proposed for reactor safeguards
 - Several active experiments, prototypes and groups
 - Physics community interested in practical applications
 - → NuTools report, annual Applied Antineutrino Physics workshops
- During beta-decay: emission of electron antineutrinos $\overline{\upsilon}_e$
 - Spectra and flux depend on isotope
 - Fission fragments rich in beta-decaying isotopes
- Unique to antineutrinos: cannot be shielded
 - Signal even penetrates heavy shielding
 - Unique signal: nuclear decays main source of antineutrinos
 - Emission spectrum correlated with decaying isotope
 - But also: very low interaction rates

5

Most approaches: detection via Inverse Beta-Decay (IBD)

Antineutrino Detection: Inverse Beta Decay

- Inverse Beta-Decay (IBD)
 - Main channel of interest

- Process: $\overline{v}_e + p \rightarrow e^+ + n$
- Double coincidence time structure:
 → powerful background rejection
- Kinematics impose energy threshold
 - 1.806 MeV for (semi-)free protons
 - Require hydrogen-rich detection medium: scintillators, organic media

Antineutrino Detection as SNF Safeguards Tool

- From reactor measurements to SNF safeguards
 - Fission fragments in SNF continue to beta-decay for decades/centuries
 - Lower **energy**, lower **flux** than reactors
 - Main detectable isotope: ⁹⁰Sr
- Advantages apply to SNF as well
 - Signal penetrates containment
 - Direct measure of content complementary to muon (density) or n/y measurements
- Complementary characterisation of SNF
 - Ongoing decays \rightarrow **continuous** monitoring
 - No need for direct physical access \rightarrow no radiation exposure for staff
- NU-SAFEGUADS project investigates several candidate technologies
 - LAB, PVT scintillators + TMS time-projection chambers
 - Investigate several storage scenarios

Antineutrino Flux Modelling: Understanding the SNF Signal

- ONIX: simulate fuel assemblies
 Example: GKN II fuel assembly at 54 MWd/kg burn-up
- Tally isotopic contents after burn-up

8

- Select main contributing isotopes (high $\overline{\upsilon}_e$ energy + long half-lives)
- NDS ENDSF database/BetaShape for beta & $\overline{\upsilon}_e$ energy spectra
- Convolve with IBD cross-section
- Determine interaction rate per ton of SNF
- Repeat for different SNF ages

Nuclear V and Disa

Example Geological Repository: Layout & Interaction Rates

y [m]

- Modelling sensitivity of idealised 80m³ detectors (no background)
 – Eight locations: 50m above casks
- Simplified geological repository
 - 1,120 canisters x 10 fuel assemblies
 - Uniform age for all canisters (50, 100 or 200 years)
- Modelled diversion of 1.25% of content (14 canisters: ~78.4t HM)
- Three detection media compared all similar overall performance

 Use TMS as example medium

g

III. Physikalische

Example Geological Repository: Expected Sensitivity

Criterion for detection: 90+% CL that diversion occurred

- Time t_{CL90} to reach 90% CL for all scenarios for removed group
 - Scenario 1 (50 years): \tilde{t}_{CL90} (median) = 8.6 months (5.0-12.5 months), 90% quantile = 11.5 months
 - Scenario 2 (100 years): \tilde{t}_{CL90} (median) = 14.2 months (10.6-17.3 months), 90% quantile = 16.7 months
 - Scenario 3 (200 years): \tilde{t}_{CL90} (median) = 20.6 months (19.4-21.8 months), 90% quantile = 21.6 months

Example Interim Storage Facility: Layout & Interaction Rates

y [m]

- Modelling sensitivity of idealised 80m³ detectors (no background)
 – Four locations:
 - 10m distance from casks
 - One side (left) service building/access
 - Iterative optimisation of locations
- Simplified interim storage
 - 130 fuel casks x 19 fuel assemblies
 - SNF stored 20-60 years ago
- Modelled following scenarios:
 - Diversion of 1 cask (~10.6 t HM)
 - Diversion of ½ cask (~5.3 t HM)
 - Re-verification of 1 cask w/ directional capability

III. Physikalische

Institut B

Example Interim Storage Facility: Expected Sensitivity

Criterion for detection: 90+% CL that diversion occurred

- Time t_{CL90} to reach 90% CL for both scenarios for each cask location
 - Scenario 1 (1 cask): \tilde{t}_{CL90} (median) = 6.4 months (0.4-15.2 months), 90% quantile = 10.9 months
 - Scenario 2 ($\frac{1}{2}$ cask): \tilde{t}_{CL90} (median) = 10.3 months (0.6-28.4 months), 90% quantile = 18.1 months

III. Physikalisch

Institut B

Example Interim Storage Facility: Re-verification with 30° Directional Capability

- Re-verification of single cask of interest: verify full or declare empty cask
 - Use Sequential Probability Ratio Test (SPRT) allow 10% false negatives, 20% false positives (can be tuned)
 - Assume 30° directional selection for incoming antineutrinos (angular resolution is technology dependent)
- Time t_{SPRT} to verify/reject a cask (30° selection cone)
 - Full Cask: \tilde{t}_{SPRT} (median) = 2.6 months (0.1-14.6 months), 90% quantile = 5.6 months
 - Empty Cask: \tilde{t}_{SPRT} (median) = 2.2 months (0.1-10.6 months), 90% quantile = 4.7 months

Conclusions

- Antineutrino detection for safeguards
 - Attractive features: reduce need for direct (staff) access
 & unique signal for SNF
 - Information complementary to density or n/γ measurements
 - But: challenging signal rates in any scenario
- Geological repositories
 - Long-term monitoring (100+ years) difficult:
 limited by ⁹⁰Sr half-life of ~30 years
 - Monitoring during filling: better signal rate but hard to cover whole repository
- Interim storage

- Newer SNF & lower stand-off distances: high signal rates!
- General monitoring: < 1 year to detect removal
- Re-verification with directional detector: < 5 months required

- NU-SAFEGUARDS: studying feasibility of antineutrino detection as safeguards for SNF
- Sensitivity analysis of two model SNF storage sites
 - Ideal conditions: signal within few months
 - Statistical tests can be tuned to specific use cases
 - Directionality can speed up re-verification
- Ongoing project to investigate:

15

- Embedding application for antineutrino monitoring in overall safeguards concepts & use cases
- Understand properties & background rates for each detector technology

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Thank you for your attention!

Funded by:

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

