Supplement of Safety of Nuclear Waste Disposal

Antineutrino detection concepts for safeguarding spent nuclear fuel

Yan-Jie Schnellbach et al.

Correspondence to: Yan-Jie Schnellbach (schnellbach@nvd.rwth-aachen.de)

The copyright of individual parts of the supplement might differ from the article licence.
ANTINEUTRINO DETECTOR CONCEPTS FOR SAFEGUARDS MONITORING OF SPENT NUCLEAR FUEL

Yan-Jie Schnellbach1, Thomas Radermacher1, Irmgard Niemeyer2, Stefan Roth1, and Malte Göttsc1\\
1RWTH Aachen, 2FZ Jülich

schnellbach@nvd.rwth-aachen.de

safeND 2023: Interdisciplinary Research Symposium on the Safety of Nuclear Fuel Disposal Practises
Berlin | 13th September 2023
Introduction: Spent Nuclear Fuel

• Spent Nuclear Fuel (SNF) produced by reactors
 – Total global SNF: ~300,000 t HM* + ~7,000 t HM annually

• Discharged SNF after refuelling goes to:
 – Spent fuel ponds (several years)
 – Interim storage facilities (several decades)
 or reprocessing
 – Ultimately: geological repository
 (none yet – Onkalo starting ’25, ~100 years operation)

• Even without operating reactors:
 – Decades to centuries of actively managing SNF

* Nuclear Technology Review 2021, GC(65)/INF/2, IAEA Report,

Fuel assembly containing SNF being loaded into a cask
https://www.gns.de/language=de/21562/behaelterbeladung
Safeguarding Spent Nuclear Fuel

• SNF requires safeguards:
 – Mostly 238U (93-96%), but also: <1% 235U, ~1% Pu
 → interim storage & final disposal subject to safeguards

• Current safeguards often rely on Continuity of Knowledge (CoK)
 – Nuclear material accountancy
 – Containment/Surveillance (C/S)
 – Design information verification (DIV)

• Declarations verified by regular inspections

<table>
<thead>
<tr>
<th>Material</th>
<th>In SNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>238U</td>
<td>93-96%</td>
</tr>
<tr>
<td>235U</td>
<td><1%</td>
</tr>
<tr>
<td>Fission fragments (e.g. 90Sr)</td>
<td>3-5%</td>
</tr>
<tr>
<td>Pu</td>
<td>~1%</td>
</tr>
<tr>
<td>Minor actinides</td>
<td><1%</td>
</tr>
</tbody>
</table>
Safeguards R&D for SNF Storage

• Safeguards impact on facility operation
 – Inspections require **access** and **radiation exposure**
 – Re-establishing CoK ("re-verification") in case of discrepancies or incident requires **huge effort & time**

• Safeguards R&D aims
 – **Lessening** operational burden (automated/remote systems)
 – **Complement** existing methods

• Under development for interim storage facilities
 – **Improved C/S** techniques (e.g. "laser curtains")
 – **Muon tomography** of casks (measuring content density)

• Under development for geological repositories
 – **Muon tomography** for design information verification

Antineutrinos as Reactor Safeguards Tool

• Concept originally proposed for reactor safeguards
 – Several active experiments, prototypes and groups
 – Physics community interested in practical applications
 → NuTools report, annual Applied Antineutrino Physics workshops

• During beta-decay: emission of electron antineutrinos $\bar{\nu}_e$
 – Spectra and flux depend on isotope
 – Fission fragments rich in beta-decaying isotopes

• Unique to antineutrinos: cannot be shielded
 – Signal even penetrates heavy shielding
 – Unique signal: nuclear decays main source of antineutrinos
 – Emission spectrum correlated with decaying isotope
 – But also: very low interaction rates

• Most approaches: detection via Inverse Beta-Decay (IBD)
Antineutrino Detection: Inverse Beta Decay

- **Inverse Beta-Decay (IBD)**
 - Main channel of interest
 - Process: $\bar{\nu}_e + p \rightarrow e^+ + n$

- **Double coincidence time structure:**
 \rightarrow powerful **background rejection**

- **Kinematics impose energy threshold**
 - **1.806 MeV** for (semi-)free protons
 - Require **hydrogen-rich** detection medium: scintillators, organic media

Prompt Signal

- e^+ energy $\propto \bar{\nu}_e$ energy

Delayed Signal

- n direction $\propto \bar{\nu}_e$ direction
Antineutrino Detection as SNF Safeguards Tool

• From reactor measurements to SNF safeguards
 – Fission fragments in SNF continue to beta-decay for decades/centuries
 – Lower energy, lower flux than reactors
 – Main detectable isotope: ^{90}Sr

• Advantages apply to SNF as well
 – Signal penetrates containment
 – Direct measure of content complementary to muon (density) or n/γ measurements

• Complementary characterisation of SNF
 – Ongoing decays → continuous monitoring
 – No need for direct physical access → no radiation exposure for staff

• NU-SAFEGUADS project investigates several candidate technologies
 – LAB, PVT scintillators + TMS time-projection chambers
 – Investigate several storage scenarios
Antineutrino Flux Modelling: Understanding the SNF Signal

Fuel Simulation
- **ONIX**: simulate fuel assemblies
 - Example: GKN II fuel assembly at 54 MWd/kg burn-up
- Tally isotopic contents after burn-up

Antineutrino Spectrum
- Select main contributing isotopes (high $\bar{\nu}_e$ energy + long half-lives)
- NDS ENDSF database/BetaShape for beta & $\bar{\nu}_e$ energy spectra

Detectable Signal
- Convolve with IBD cross-section
- Determine interaction rate per ton of SNF
- Repeat for different SNF ages
Example Geological Repository: Layout & Interaction Rates

- Modelling sensitivity of idealised 80m3 detectors (no background)
 - **Eight locations**: 50m above casks

- Simplified geological repository
 - 1,120 **canisters** x 10 fuel assemblies
 - Uniform age for all canisters (50, 100 or 200 years)

- Modelled diversion of 1.25% of content
 (14 canisters: ~78.4t HM)

- Three detection media compared – all similar overall performance
 - Use TMS as example medium
Example Geological Repository: Expected Sensitivity

- Criterion for detection: 90+% CL that diversion occurred
- Time t_{CL90} to reach 90% CL for all scenarios for removed group
 - Scenario 1 (50 years): t_{CL90} (median) = 8.6 months (5.0-12.5 months), 90% quantile = 11.5 months
 - Scenario 2 (100 years): t_{CL90} (median) = 14.2 months (10.6-17.3 months), 90% quantile = 16.7 months
 - Scenario 3 (200 years): t_{CL90} (median) = 20.6 months (19.4-21.8 months), 90% quantile = 21.6 months
Example Interim Storage Facility: Layout & Interaction Rates

- Modelling sensitivity of idealised 80m³ detectors (no background)
 - **Four locations:**
 - 10m distance from casks
 - One side (left) service building/access
 - Iterative optimisation of locations

- Simplified interim storage
 - 130 fuel casks x 19 fuel assemblies
 - SNF stored 20-60 years ago

- Modelled following scenarios:
 - Diversion of 1 cask (~10.6 t HM)
 - Diversion of ½ cask (~5.3 t HM)
 - Re-verification of 1 cask w/ directional capability
• Criterion for detection: 90+% CL that diversion occurred

• Time t_{CL90} to reach 90% CL for both scenarios for each cask location
 – Scenario 1 (1 cask): \tilde{t}_{CL90} (median) = **6.4 months** (0.4-15.2 months), 90% quantile = 10.9 months
 – Scenario 2 (½ cask): \tilde{t}_{CL90} (median) = **10.3 months** (0.6-28.4 months), 90% quantile = 18.1 months
Example Interim Storage Facility: Re-verification with 30º Directional Capability

- Re-verification of **single cask of interest**: verify full or declare empty cask
 - Use Sequential Probability Ratio Test (SPRT) - allow 10% false negatives, 20% false positives (can be tuned)
 - Assume 30º directional selection for incoming antineutrinos (angular resolution is technology dependent)

- Time t_{SPRT} to verify/reject a cask (30º selection cone)
 - Full Cask: \tilde{t}_{SPRT} (median) = 2.6 months (0.1-14.6 months), 90% quantile = 5.6 months
 - Empty Cask: \tilde{t}_{SPRT} (median) = 2.2 months (0.1-10.6 months), 90% quantile = 4.7 months
Conclusions

- **Antineutrino detection for safeguards**
 - *Attractive* features: reduce need for direct (staff) access & unique signal for SNF
 - Information complementary to density or n/γ measurements
 - But: *challenging* signal rates in any scenario

- **Geological repositories**
 - Long-term monitoring (100+ years) difficult:
 - **limited by** 90Sr *half-life* of ~30 years
 - Monitoring during filling: better signal rate but hard to cover whole repository

- **Interim storage**
 - Newer SNF & lower stand-off distances: **high signal rates**!
 - **General monitoring**: < 1 year to detect removal
 - **Re-verification** with directional detector: < 5 months required

Interim Storage: Monitoring Scenario

Interim Storage: Re-verification Scenario

Empty Cask

90% quartile

90% quartile

Time to decision [months]
Summary & Outlook

- **NU-SAFEGUARDS**: studying feasibility of antineutrino detection as safeguards for SNF

- Sensitivity analysis of two model SNF storage sites
 - Ideal conditions: signal within few months
 - Statistical tests can be tuned to specific use cases
 - Directionality can speed up re-verification

- Ongoing project to investigate:
 - Embedding application for antineutrino monitoring in overall safeguards concepts & use cases
 - Understand properties & background rates for each detector technology

Funded by:
Thank you for your attention!