Supplement of

Technological readiness of alternative reactor concepts

Matthias Englert and Christoph Pistner

Correspondence to: Matthias Englert (m.englert@oeko.de)

The copyright of individual parts of the supplement might differ from the article licence.
Technological readiness of alternative reactor concepts

M. Englert, C. Pistner
safe.nd, Berlin, 15.09.2023
Agenda

1. "Novel“ Reactor Concepts
2. Evaluation Criteria
3. Examplary discussion
4. Conclusions
“Novel Reactor Concepts”
Expert opinion on „novel“ reactor concepts

- Overview of currently internationally pursued technology lines and reactor concepts
- Assessment of technology readiness, safety, fuel supply, waste disposal and proliferation risks, as well as costs
- Small modular reactor concepts not considered in depth

→ Available at:

Project-Team

- Öko-Institut e.V.:
 - Dr. Christoph Pistner
 - Dr. Matthias Englert

- TU Berlin, Fachgebiet Wirtschafts- und Infrastrukturpolitik (Department of Economic and Infrastructure Policy, WIP):
 - Prof. Dr. Christian von Hirschhausen
 - Fanny Böse
 - Björn Steigerwald
 - Lukas Gast
Important definitions

- So-called „novel“ reactor concepts or „alternative“ reactor concepts
 - History of concepts is often decades old
 - Questioning the „linear“ generation concept of the GIF (Generation IV)
Concept of reactor generations (within a technology line)

<table>
<thead>
<tr>
<th>Technologie Linie</th>
<th>Erste Experimentalreaktoren</th>
<th>Erste Leistungsreaktoren (Gen I)</th>
<th>Weiterentwickelte Leistungsreaktorkonzepte (Gen II)</th>
<th>Fortgeschrittene Reaktorkonzepte (Gen III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>MTR, S1W, S2W, MZFR</td>
<td>Shippingport, Obninsk, Obregheim</td>
<td>Konvoi</td>
<td>AP-1000, VVER-1200, EPR</td>
</tr>
<tr>
<td>BWR</td>
<td>BORAX-I bis -V, Kahl</td>
<td>Dresden I, Gundremmingen-A</td>
<td>SWR-72</td>
<td>(KERENA), ABWR</td>
</tr>
<tr>
<td>PHWR</td>
<td>ZEEP, NRX, NRU</td>
<td>Rolphoton</td>
<td>CANDU 500, CANDU 6</td>
<td>(EC 6, ACR-1000)</td>
</tr>
<tr>
<td>GCR</td>
<td>CP-1, Windscale</td>
<td>Calder Hall, Marcoule</td>
<td>AGR</td>
<td>-</td>
</tr>
<tr>
<td>VHTR</td>
<td>Dragon, AVR, HTR-10</td>
<td>Peach Bottom, THTR, HTR-PM, (VHTR)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SFR</td>
<td>Fermi I, Br-10, CEFR, KNK I und II, Rapsodie, TWR</td>
<td>BN-800, Monju, Super-Phoenix (BN-1200)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LFR</td>
<td>(BREST-OD300)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GFR</td>
<td>(GFR)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MSR</td>
<td>ARE, MSRE</td>
<td>(LFTR, MCFR)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SCWR</td>
<td>HDR</td>
<td>(CSR1000)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADS</td>
<td>(MYRRHA)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Quelle: (IAEA 2023c; Greenspan 2021; GIF 2002), geplante, jedoch bislang nicht in Betrieb befindliche Konzepte sind kursiv geschrieben und in Klammern gesetzt
Important definitions

- So-called „novel“ reactor concepts or „alternative“ reactor concepts
 - History of concepts is often decades old
 - Questioning the „linear“ generation concept of the GIF (Generation IV)

- Distinction between „technology lines“ vs. „reactor concepts“
 - Superordinate term for roughly similar concepts: „technology line“
 - Detailed concept within a technology line: „reactor concept“
„Technology lines“

- Accelerator Driven Systems, ADS
- Supercritical Water-cooled Reactors, SCWR
- Sodium-cooled Fast Reactors, SFR
- Lead-cooled Fast Reactors, LFR
- Gas-cooled Fast Reactors, GFR
- Very High Temperature Reactors, VHTR
- Molten Salt Reactors, MSR
Systematization of technology lines and corresponding reactor concepts

<table>
<thead>
<tr>
<th>Technology line</th>
<th>Distinguishing criteria</th>
<th>Reactor concept / Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>No</td>
<td>MYRRHA</td>
</tr>
<tr>
<td>SCWR</td>
<td>Water</td>
<td>CSR1000</td>
</tr>
<tr>
<td>SFR</td>
<td>Sodium</td>
<td>With Rep. BN-800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Without Rep. TWR</td>
</tr>
<tr>
<td>LFR</td>
<td>Lead</td>
<td>Brest OD-300</td>
</tr>
<tr>
<td>GFR</td>
<td>Yes</td>
<td>GFR</td>
</tr>
<tr>
<td>VHTR</td>
<td>Gas</td>
<td>Spherical FE HTR-PM</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Prismatic FE Prismatic HTR</td>
</tr>
<tr>
<td>MSR</td>
<td>Salt</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

- ADS: No
- SCWR: Water
- SFR: Sodium
- LFR: Lead
- GFR: Yes
- VHTR: Gas
- MSR: Salt

- Criticality
- Coolant
- Moderation
- Further features
- Facility
Evaluation Criteria
Technology readiness

Three levels each, “lowest“ classification defines overall level

- „Applied Research“
- „Development“
- „Deployment“
Technology readiness

Three levels each, „lowest“ classification defines overall level

- „Applied Research“
- „Development“
- „Deployment“

Indicators:
 - Fuel/Materials
 - Operational requirements, inspection, maintenance, aging management
 - I&C
 - Safety functions
 - Safety assessment
Other evaluation criteria

Reference is today‘s LWRs

Three levels:

- Advantage
- No significant advantage or disadvantage
- Disadvantage

Assessment

- is based on inherent properties (technology line)
- depends (mostly) on the specific design (reactor concept)
Safety

Indicators:

● Normal operation
● Safety functions:
 – Reactivity control
 – Cooling
 – Confinement of radioactivity
● Event spectrum
● Safety verification
Fuel supply and waste

Indicators:
- Fissile material demand/Fuel production
- Waste streams (qualitative)
- Waste inventories (heat production, activity, volume, mass)
- Long-term safety aspects
Proliferation

Indicators:
- Uranium enrichment requirements
- Reprocessing planned/necessary
- Pu vector and Pu quantities
Costs

Indicators:
- Investment costs
- Operation costs
- Construction times
- Investment risks
- Planned service life/load factors
Exemplary discussion
Sodium-cooled Fast Reactors (SFR)
Major) Advantages/Disadvantages

- Better utilization of uranium
- Low pressure of primary coolant (loss-of-coolant events less demanding)
- Higher operating temperature
- Opaque (non-transparent) coolant (problematic for inspection and maintenance)
- Reactivity control more demanding (positive feedback effects)
- Chemically reactive coolant (sodium fires)
- Higher proliferation risks with closed fuel cycle
- Higher investment costs
- Better utilization of uranium
- Low pressure of primary coolant (loss-of-coolant events less demanding)
- Higher operating temperature
- Opaque (non-transparent) coolant (problematic for inspection and maintenance)
- Reactivity control more demanding (positive feedback effects)
- Chemically reactive coolant (sodium fires)
- Higher proliferation risks with closed fuel cycle
- Higher investment costs
BN-800

Line: SFR
Name: Beloyarsk-4
Country: Russia
Developer: Rosenergoatom
Power: 820 MWe (Net) / 885 MWe (Gross)
Coolant: Sodium
Moderator: /
Fuel: MOX (with Rep.)
Neutron spectrum: Fast

Quelle: Nori, DOI: 10.13140/RG.2.2.31153.81761/1
SFR – A few conclusions

- Status: more than 20 prototype reactors and 400 years of operating experience for 70 years of research and development, but still no commercially viable system
- Fuel utilization: fundamental aspect of breeding of new fissile material, but not needed in the foreseeable future
- Safety: specific advantages as well as disadvantages, actual safety performance so far is poor
- Proliferation: potentially significant disadvantage, since weapons-grade fissile material can be produced, but highly dependant on actual technical design
(Very) High Temperature Reactors – (V)HTR

[Diagram of a (Very) High Temperature Reactor (V)HTR system, showing the reactor core, control rods, primary coolant (Helium), secondary coolant (Water or Gas), blower, heat exchanger, pump, turbine, generator, and electrical power output.]
(Major) Advantages/Disadvantages

- High working temperatures of the coolant
- Chemically inert and optically transparent coolant
- Strong negative reactivity feedback
- Possible passive residual heat removal from the reactor core
- Confinement by TRISO-fuel up to approx. 1600°C

- Limitation of the power size for passive properties
- Exclusion or control of other accident sequences needed (air/water intrusions, graphite fire)
- High amounts of graphite waste
HTR-PM (Tsinghua University, China)

- Development (in China) since 2001, commissioning December 2021
- 210/2 MWe, gas cooled (Helium), graphite moderated pebble bed
- 8.5% enriched UO₂–TRISO fuel
- Partial passive safety properties (strongly negative temperature coefficients, high heat capacity)
- Continuous refuelling
- 750°C Output temperature
- No Containment
- Thermal neutron spectrum

Sources: GIF 2018, Kölzer 2011, IAEA ARIS 2018
According to manufacturer
(V)HTR – A few conclusions

- **Status:** 60 years of development, several ambitious research and development programs (USA, Germany, South Africa) have failed. New attempt in China.

- **Safety:** Possibly specific advantages with respect to loss-of-coolant events (passive heat removal), but other accident scenarios need to be considered in detail (air and water intrusion, graphite fires …)

- **Waste:** Comparable waste problem, but different waste properties (graphite) to be considered

- **Economics:** Limitation to low total power to maintain passive cooling characteristics. Temperature < 750°C and water-steam secondary cycle to minimize development time and risks.
Molten Salt Reactors, MSR
Many different reactor concepts possible

Figure MSR-1. The most studied MSR concepts, with key players (research & technology organization or vendors)
(Major) Advantages/Disadvantages

- High coolant temperature
- Low pressures in primary coolant
- Possibly strong negative reactivity feedback
- High and flexible fuel utilization

- Development of a suitable molten salt needed
- Corrosive properties of molten salt
- Free-flowing radioactive inventory (radiation protection, fissile material control)
- Required (on-site) reprocessing
MCFR

Line: MSR
Name: Molten Chloride Fast Reactor
Country: USA
Developer: TerraPower
Power: 1200 MWe
Coolant: Chlorid salt
Moderator: /
Fuel: U/Pu
Neutron spectrum: Fast

MSR – A few conclusions

- **Status:** considerable efforts between the 1940s and 1970s, revival after 2000, a commercially viable system not expected before ~2050

- **Safety:** Some advantages possible, but
 - significant technological development still needed (materials, instrumentation, safety assessment methods)
 - serious radiation protection aspects to be solved even in normal operation

- **Waste:** Different waste streams and other relevant radionuclides (Cl-36, C-14) to be taken into account

- **Proliferation:** specific problems due to the required (online) reprocessing of fuel salt
Conclusions
Conclusions I

- Principles of technology lines (SFR, VHTR, GFR, LFR, SCWR, MSR) known since 1950s (possible exception ADS)
- Development of technology lines not „linear“: classification as generation IV is highly questionable, generation II-B would often be more appropriate
- In terms of technological readiness, many technology lines and reactor concepts remain in early stages of development, no system has advanced to the „market penetration“ phase
 - no extensive findings from smaller experimental reactors available for GFR, SCWR, ADS
 - no demonstration reactor so far for LFR, MSR
 - most extensive technical experience available for the SFR and VHTR
Conclusions II

- Developers' schedules often characterized by overly optimistic assumptions, delayed by years or even decades, in many cases specific approaches are discontinued completely.
- Demonstration reactors to date are not yet suitable for widespread (market) deployment, additional FOAK reactors still needed.
- Fuel/material development in particular is time-limiting.
- Time still required for the development of novel reactor concepts is probably in the range of several decades.
Conclusions III

- Individual technology lines – with rigorous design – may deliver advantages over today's LWRs in individual evaluation criteria.

- With respect to wastes, an overall reduction of actinide inventories may be achieved, but no significant reduction in the requirements upon a geological repository is to be expected. At the same time, additional low- and intermediate-level radioactive waste streams would be generated. Some technology lines would also generate novel waste materials (such as salts) for which novel disposal pathways would have to be developed.

- None of the technology lines can be expected to have an advantage over today's LWRs in all areas, disadvantages compared to today's LWRs are possible in individual areas.
Vielen Dank für Ihre Aufmerksamkeit!
Thank you for your attention!

Haben Sie noch Fragen?
Do you have any questions?