Supplement of Saf. Nucl. Waste Disposal, 2, 23–23, 2023 https://doi.org/10.5194/sand-2-23-2023-supplement © Author(s) 2023. CC BY 4.0 License.





## Supplement of

# Investigations of aged metal seals for transport package safety assessment

Annette Rolle et al.

Correspondence to: Annette Rolle (annette.rolle@bam.de)

The copyright of individual parts of the supplement might differ from the article licence.

# **Investigations of Aged Metal Seals for Transport Package Safety Assessment**



## Annette Rolle, Tino Neumeyer, Viktor Ballheimer, Frank Wille

Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany

**Background**: To ensure the required tightness for transport and storage cask for high level radioactive material usually metal seals of the Helicoflex® Type are used. The mechanical and thermal loadings associated with the conditions of transport specified in the IAEA-regulations (such as 0.3 and 9 m drop test and 800°C fire test) can have a significant effect on the leak tightness of the sealing system and require potent seals. Due to the long-term use, the seal behavior is influenced by temperature and time.

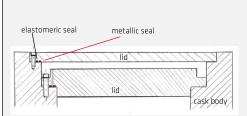



Figure 1: Example for an usual transport cask sealing system



Figure 2: Seal Helicoflex<sup>R</sup> HN200: spring, inner jacket (stainless steel) and outer jacket (aluminum or silver)

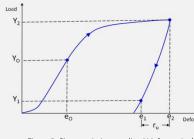



Figure 3: Characteristic curve (load/deformation) of a Helicoflex<sup>R</sup> HN200 seal

Y<sub>0</sub>=load on the compression curve above which leakage rate is at required level

Y<sub>2</sub>= load required to reach optimum compression e<sub>2</sub>

Y<sub>1</sub>= load on the decompression curve below which leakage rate exceeds required level

 $e_2$ = optimum compression \*  $r_u$  = useful elastic recovery ( $e_2$ - $e_1$ )

\*) required He-leakage rate is

\*) required He-leakage ra 10 -8 Pa m<sup>3</sup> s<sup>-1</sup>

**Question**: How does ageing of metal seals influence the sealing efficiency under the special condition, when deformation or short term displacement of cask components made possible a little seal repositioning before compression again?

### Test set up and procedure:

- Compression of flange pairs with metal seals (5 with Al- and 5 with Ag-jacket) in test flanges, measurement of leak tightness,
- 2. ageing at 125°C for 3 months,
- 3. flange pair opening, seal repositioning, repeated compression.

Measurement of sealing forces, deformation and leak tightness were performed during all compression and relief cycles.



Figure 5: Temperature chambe



Figure 4: Test flanges

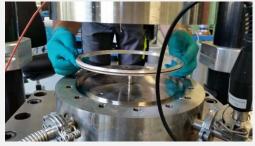



Figure 6: Lifting/repositioning of the seal before repeated compression

#### First results:

- 1. With parameters chosen for ageing reliable  $y_2$  reduction is achievable (30 % for Ag-seals, 40 % for Al-seals).
- 2. Tightness after ageing before flange opening was always better than He-leakage rate 10<sup>-8</sup> Pa m<sup>3</sup> s<sup>-1</sup>.
- After flange opening, seal movement and repeated compression, leakage rate of the Ag-seal was still better than 10<sup>-8</sup> Pa m<sup>3</sup> s<sup>-1</sup> but, leakage rate of the Al-seals was significant higher than 10<sup>-8</sup> Pa m<sup>3</sup> s<sup>-1</sup>.
- An influence of the way of seal movement could not be detected.

Next step planned: Variation of ageing conditions

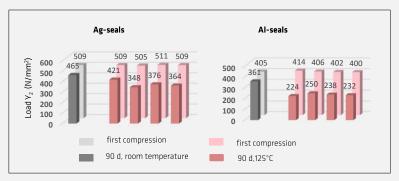



Figure 7: Reduction of Y<sub>2</sub> after ageing (90d, 125°C)

Sicherheit in Technik und Chemie

