Supplement of Safety of Nuclear Waste Disposal

Experimental investigations with neutron radiography of hydrogen effects by elastic stresses on cladding tubes under conditions similar to interim dry storage

Sarah Weick et al.

Correspondence to: Sarah Weick (sarah.weick@kit.edu)

The copyright of individual parts of the supplement might differ from the article licence.
Experimental investigations with neutron radiography of hydrogen effects by elastic stresses on cladding tubes under conditions similar to interim dry storage

Sarah Weick, Mirco Grosse, Conrado Roessger, Martin Steinbrueck
Experimental investigations with neutron radiography of hydrogen effects by elastic stresses on cladding tubes under conditions similar to interim dry storage

Introduction
SNF
H in Zr

Setup/Methods

Analysis
Hydrogenation
Tensile Tests
NR

Results
NR/CGHE

Conclusion

Outlook

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND) 13-15th September 2023, Berlin, Germany
Introduction – Spent Nuclear Fuel

Govers et al., 2019

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND)
13-15th September 2023, Berlin, Germany
Introduction – Hydrogen embrittlement

- H in cladding tubes
 - H uptake favoured by foreign atoms, alloying elements & textures
 - Mechanical strain & chemical activity → influence H diffusion

- Zr Hydrides
 - Circumferential or radially orientated
 - Reduce strength & ductility
 - Delayed hydride cracking (DHC)
Introduction – H solubility

- H dissolution-precipitation scheme with modelled **TSS**
 (terminal solid solubility)

 → **TSSp**: precipitation
 terminal solubility limit

 → **TSSd**: dissolution
 terminal solubility limit

Kaufholz et al. 2018, modified from Konarski 2021
Experimental investigations with neutron radiography of hydrogen effects by elastic stresses on cladding tubes under conditions similar to interim dry storage
Experimental Setups

- **Single Effect Experiments**
 - Samples: cm - range
 - Influences of texture, grain size & elastic strain
 - Diffusion coefficients H

- **QUENCH Bundle Test**
 - Samples: m - range
 - Interim storage conditions (100-400°C; 70/96 MPa, 100/300 wt.ppm H)
 - Long-term 250 d

<table>
<thead>
<tr>
<th>alloy</th>
<th>Sn [wt.%]</th>
<th>Fe [wt.%]</th>
<th>Cr [wt.%]</th>
<th>Nb [wt.%]</th>
<th>O [wt.%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zry-4, D4</td>
<td>1.3</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>0.13</td>
</tr>
<tr>
<td>Dx</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>-</td>
<td>0.14</td>
</tr>
<tr>
<td>Zirlo</td>
<td>0.9</td>
<td>0.1</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
</tr>
</tbody>
</table>

Sarah Weick

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND)
13-15th September 2023, Berlin, Germany

IAM-AWP-HTWC
Methods - Hydrogenation

- Annealing from gas phase with SICHA
- **SICHA** = Sieverts Chamber for Hydrogen Absorption

Zry-4, 900°C, 230 ppm H

V = 0.158 l

INNRO furnace at KIT

Sarah Weick

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND)
13-15th September 2023, Berlin, Germany
Methods - Hydrogenation

- 21 hydried (100 & 300 wt.ppm) fuel rod simulators (l = 2.5 m)
Methods – Dry Storage Simulation

- 3 different cladding materials
- 2 different pressures

Tempered cooling jacket (T=12-14°C)

Insulation

Zircaloy
Shroud
Heated rod
Steel tube
Methods – Dry Storage Simulation

- Start-T: 400 °C (rod centre) - 100 °C (rod ends)
- Slow cooling: 7 K/w for 250 d
- Strain influences: thermal > plastic > cladding creep > elastic
Methods – Tensile Tests

INCHAMEL = In-situ Neutron radiography CHAmer with MEchanical Load

- Tensile tests
- Inductive heating
- Contactless strain & temperature measurements
- Transportable -> external neutron beamlines
- Iron free components; no long-term neutron activation

INCHAMEL facility at KIT

Methods – Tensile Tests

INCHAMEL = In-situ Neutron radiography CHAmer with MEchanical Load

- Tensile tests
- Inductive heating
- Contactless strain & temperature measurements
- Transportable -> external neutron beamlines
- Iron free components; no long-term neutron activation

INCHAMEL facility at KIT

Methods – Tensile Tests

INCHAMEL = In-situ Neutron radiography CHAmer with MEchanical Load

- Tensile tests
- Inductive heating
- Contactless strain & temperature measurements
- Transportable -> external neutron beamlines
- Iron free components; no long-term neutron activation

INCHAMEL facility at KIT
Analysis – Neutron Radiography

\[NR = \text{Neutron Radiography} \]

\[I = I_0 e^{-\sigma N d} \]

\[\Sigma = \sigma N \]

Symbols:
- \(I \): intensity
- \(T \): transmission
- \(\sigma \): microscopic neutron cross section
- \(N \): number density
- \(d \): sample thickness
- \(\Sigma \): macroscopic neutron cross section/neutron attenuation coefficient

Equation:

\[I = I_0 e^{-\sigma N d} \]

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND) 13-15th September 2023, Berlin, Germany
Analysis – Neutron Radiography

X-rays

- photo electron absorption
- scattering

neutrons

- absorption
- scattering

Kardijilov et al. 2019

Lehmann 2012

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND)
13-15th September 2023, Berlin, Germany
Analysis – Neutron Radiography

\[T = \frac{I}{I_0} \]

\begin{align*}
\Sigma_{\text{total}} & [\text{cm}^{-1}] \\
0 & 0.5 \\
0.25 & 1 \\
0.5 & 1.5 \\
0.75 & 2 \\
1 & 2.5 \\
\end{align*}

H/Zr ratio

\begin{align*}
N_{\text{H}}/N_{\text{Zr}} = 0 & 0.28 \\
& 0.50 \\
& 0.51 \\
& 0.87 \\
& 0.99 \\
\end{align*}

ICON beamline at the PSI
INCHAMEL facility

Grosse et al. 2021

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND)
13-15th September 2023, Berlin, Germany
Results – Diffusion coefficients

- ZrH$_2$ powder, Ar, 400°C, 3h

\[c(x, t) = c_0 \left(1 - \text{erf}\left(\frac{x}{2\sqrt{D}t}\right)\right) + c_i \]

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND)

13-15th September 2023, Berlin, Germany
Results – Tensile Tests

Δσ=90 MPa
Δσ=80 MPa
Δσ=70 MPa

160 wt.ppm H

200-µm
Results – Tensile Tests

CGHE: $c_H = 160 \text{ wt.ppm}$

CGHE: $c_H = 80 \text{ wt.ppm}$
Experimental investigations with neutron radiography of hydrogen effects by elastic stresses on cladding tubes under conditions similar to interim dry storage

- Introduction
- SNF
- H in Zr

- Setup/Methods
- Hydrogenation
- Tensile Tests
- NR

- Analysis
- NR/CGHE

- Results

- Conclusion

- Outlook

Interdisciplinary research symposium on the safety of nuclear disposal Practices (safeND)
13-15th September 2023, Berlin, Germany
Conclusion

- How to determine hydrogen effects by elastic stresses on cladding tubes under conditions similar to interim dry storage?

 → With single effect experiments in combination with a tensile testing machine observed by NR (ex-/in-situ)

 → With a long-term experiment imitating the slow cooling process and dry storage relevant p-T-conditions

 → With modelling

 → With SNF samples (pellet-cladding interactions)
Outlook

- **Single Effect Experiments**

 → NR ex-situ with the INCHAMEL facility for investigations of the stress influence on H diffusion and solubility in Zr for longer time scales (weeks)

 → NR in-situ with the INCHAMEL facility for investigations of local stress induced hydrogen dissolution and precipitation processes

- **QUENCH bundle test**

 → NR ex-situ investigations of the simulation rods under the various p-T-conditions at the end of the test

 → metallographic investigations of the hydride precipitation direction (stress influenced) at the end of the test
Acknowledgements

• the SPIZWURZ project (FKZ 1501609B) is funded by the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV)
• the INCHAMEL facility was funded by the HOVER program of the Helmholtz Association
• PSI for providing beamtime & Anders Kaestner, David Mannes & Matteo Busi for their assistance during the measurements /analysis
• GRS team
• chemical analysis group of Thomas Bergfeldt (IAM-AWP)
• QUENCH team & colleagues at KIT

Thank you!