

Supplement of

The anaerobic corrosion of the carbon steel overpack under anoxic alkaline conditions representing the Belgian supercontainer concept

Roberto Gaggiano

Correspondence to: Roberto Gaggiano (r.gaggiano@nirond.be)

The copyright of individual parts of the supplement might differ from the article licence.

ONDRAF/NIRAS

The anaerobic corrosion of the carbon steel overpack under anoxic alkaline conditions representing the Belgian supercontainer concept

R. Gaggiano

12/09/2023

Geological disposal concept

Design 2020 - ONDRAF/NIRAS ©

Vertical cross-section of the disposal gallery for C-waste

The 'Supercontainer' design

Reference disposal concept in Belgium

- Carbon steel **overpack** containing either vitrified HLW canisters or spent fuel assemblies
- The overpack is surrounded by a OPCbased concrete **buffer**

- The cylindrical cavity between the overpack and the concrete buffer is filled with a cementitious filler
- The concrete buffer is enterily encased in a stainless steel **envelope**.

Corrosion programme: RD&D methodology and research activities

Contained Environment Concept

 <u>Aim</u>: to fix and preserve a favourable chemical environment in the immediate vicinity of the overpack for a long time, at least for the duration of the thermal phase

 The main goal of the ongoing RD&D corrosion studies is to provide confidence that the integrity of the carbon steel overpack will not be jeopardized at least for the duration of the thermal phase.

Long-term safety function C-steel overpack

RD&D methodology

Integrated 3-step approach

1. Development of the Corrosion Evolutionary Path

2. Determining reliable uniform corrosion rate data

- Reliable estimate of the uniform corrosion rate for the different phases of the CEP
- Lifetime predictions (i.e., the reduction in wall thickness in µm/year)

$$d_{overpack} = \sum v_i \cdot t_i$$

• Evolution of the passive film with time

3. Proving the validity of the 'exclusion principle'

- Any other form of corrosion cannot occur
 - ➡ Pitting corrosion
 - ➡ Stress corrosion cracking

Research activities

- Measurement of H₂ generated during the anoxic corrosion of carbon steel 3Fe + 4H₂0 → Fe₃0₄ + 4H₂1
- 4 independent techniques:
 - Barometric glass gas cells
 - Autoclaves equipped with pressure transducers
 - Solid-state hydrogen sensor
 - Electrochemical measurements
- Study of chloride pitting of carbon steel
 - Potentiodynamic polarization measurements
 - Modelling of the results and long-term prediction by means of the Point Defect Model and the Mixed Potential Model.

Current status Belgian RD&D corrosion programme

Results - volumetric method (Limit of detection: ~100 nm/y)

80°C 25°C 1100 150 1+ 44+ 0 + 500 + 5000 - 40+ 00+ 00 1000 -----130 900 € 800 110 E 90 E 700 2 600 unirradiated 10 TO Cell 1R E 500 Cell 3R Cell 1R adjusted with Blank 9R Blank 9R Cell 3R adjusted with Blank 11R ±[™]400 **1** 50 Blank 11R 200 Total 200 Total 30 Total 100 Dess 400 m 0 60,000 80,000 20,000 40,000 20.000 40.000 60.000 -100 Exposure Time (hours) Exposure time (hours)

Increase in gas generation steeper in irradiated cells over initial period

no radiolysis or other degassing process

Boundary conditions: [Cl⁻]: 100 mg/L [S²⁻]: 500 mg/L [S₂O₃²⁻]: 100 mg/L T = 25°C, 50°C, 80°C $\gamma = 25$ Gy/h

Results - volumetric method

- Irradiated YCW corrosion rate past
 5 years = 0.045 µm/year
- Unirradiated YCW corrosion rate past 5 years = 0.025 µm/year

- For all unirradiated cells the total gas generation is immeasurably small
- Irradiated YCW +S⁻² +S₂O₃²⁻+Cl⁻ corrosion rate over all 4 years = 0.013 μm/year
- Irradiated YCW +S⁻² corrosion rate over all 4 years < 0.01 μm/year

Boundary conditions: [Cl⁻]: 100 mg/L [S²⁻]: 500 mg/L [S₂O₃²⁻]: 100 mg/L T = 25°C, 50°C, 80°C $\gamma = 25$ Gy/h

- Irradiated YCW +Cl- corrosion rate past 5 years = 0.048 µm/year
- Steady state corrosion rate is comparable to that measured at 25 °C
- Total gas generation is greater than at 25 °C and is due to initial corrosion rate

Boundary conditions: [Cl⁻]: 100 mg/L [S²⁻]: 500 mg/L [S₂O₃²⁻]: 100 mg/L T = 25°C, 50°C, 80°C $\gamma = 25$ Gy/h

Results: autoclaves with pressure transducer

(Limit of detection: <1 nm/year)

After approximately one year's exposure the corrosion rate had dropped to less than **0.03 µm/year** (still decreasing)

Currently transferring all glass cell experiments (operating >10 years) to autoclaves.

Results – hydrogen sensor (Detection limit: ~0.01 nm/y)

- Effect of the steel composition/form
- Wire corrodes at 10 nm/year
- Plate corrodes at 0.03 nm/year

- Effect of temperature on passivation?
- 50°C \rightarrow unexpectedly high corrosion rate
- Exactly same conditions as a previous cell at 80 °C, corroding at 10 nm/yr.
- Temperature change to 80°C \rightarrow lower LT corrosion rate

Oxide film characterization

Exposure to YCW

- In the long-term corrosion products predominantly composed of magnetite
- Thickness corrosion product layer \sim 2-3 µm (after \sim 5 years)

Oxide film characterization

Exposure to cementitious solutions

TEM measurements

 More complex composition than the corrosion products in YCW: outer and inner layer are composed of calcium, silicon, iron and oxygen (and traces of aluminum). D+160 : Outer layer =1,3 μm Inner layer = 0,2 μm Border at the interface (nanometric)

Pitting corrosion Experimental details

Focus on chloride pitting No other aggressive species are taken into account

Extrapolation of the long-term behavior by means of the MPM

Pitting corrosion Effect of chloride

- The breakdown potential (E_b) decreases with increasing chloride concentration.
- CI⁻ <1M, no passivity breakdown occurs on carbon steel in SCPS.
- Cl⁻ >2M, pitting corrosion occurs. The E_b decreases with increasing chloride concentration.
- When the Cl- of SCPS is 1.5M, passivity breakdown occurs at random, indicating that 1.5M is the Cl⁻ concentration for the transition of carbon steel from passivity to passivity breakdown in simplified concrete pore solution.

Pitting corrosion Artificial pit experiment

- Experimental confirmation that, even if pits nucleate in the oxic period, they cannot maintain differential aeration during the anoxic period → no further pit activation
- The pit cavity becomes polarity inverted,
 → hydrogen evolution occurs within the cavity
 →(metal oxidation) occurs on the external surface
- The solution within the cavity is expected to become more alkaline than the external environment and
- Cations (e.g., Na⁺) are preferentially transported into the pit and chloride ejected from the pit.

Long-Term modelling approach

- Deterministic Monte Carlo Simulation: keep track of each stable pit that nucleates, propagates, and repassivates on the metal surface.
 - \rightarrow Simulation of the following processes
 - →Pit nucleation rate
 - →Pit propagation rate
 - Probability of pit repassivation

Assumption:

Pit nucleation occurs immediately after metal exposure, during the high temperature, oxic period.

Pitting represents no threat to the integrity of the overpack (if corrosion allowance = 15 mm)

No repassivation considered

Repassivation considered

Stress corrosion cracking (welds)

- SSRT tests were conducted on base and welded samples:
 - Base and welded samples (SAW, MIG/MAG, RPEB)
 - Anoxic conditions
 - T = 140°C
 - Open circuit potential/applied potential
 - YCW (pH 13.5) (in the presence or absence of agressive species)

- SSRT tests at OCP and at applied potential:
 - OCP: no increased SCC susceptibility, typical stress-strain behaviour of a ductile material.
 - Applied potential: so far, the potential does not seem to have a significant effect on the SCC susceptibility and the stress-strain behaviour of carbon steel in high pH solutions.

Stress corrosion cracking (welds) **Typical results**

1,000 mg/L Cl⁻ 35,000 mg/L Cl⁻

100 mg/L Cl⁻

1,000 mg/L Cl⁻ 35,000 mg/L Cl⁻

100 mg/L Cl⁻

1,000 mg/L Cl⁻ 35,000 mg/L Cl⁻

100 mg/L Cl⁻

Stress corrosion cracking (welds)

Typical results

SAW welding longitudinal 1,000 mg/L

Envelope Selection of candidate materials

CE

List of candidate materials was studied (pitting and uniform corrosion behaviour)

	Common denomination	UNS	Cr	Ni	Мо	с	N	Cu	Other	PREN
Austenitic —	► 316L	S31603	16-18	10-14	2-3	0.03	0.1	-	-	23
Nickel-based —	 Alloy 825 	N08825	19.5-23.5	38-46	2.5-3.5	0.05		1.5-3.5	Ti: 0.6-1.2	28
Nickel-based —	► 904L	N08904	19-23	23-28	4-5	0.02	-	1-2	-	32
Super Austenitic	→ 254 SMO	S31254	19.5-20.5	17.5-18.5	6-6.5	0.02	0.18-0.22	0.5-1	-	42
Nickel-based —	AI-6XN	N08367	20-22	23.5-25.5	6-7	0.03	0.18-0.25	0.75	-	43
Nickel-based —	 Alloy 31 	N08031	26-28	30-32	6-7	0.02	0.15-0.25	1-1.4	-	48
Lean Duplex —	→ LDX2304	S32304	21.5-24.5	3-5.5	0.05-0.6	0.03	0.05-0.2	-	-	22
Duplex	DX2205	S31803	21-23	4.5-6.5	2.5-3.5	0.03	0.08-0.2	-	-	31
Super Duplex —	► SDX2507	S32750	24-26	6-8	3-5	0.03	0.24-0.32	0.5	-	38
Super Duplex —	→ SDX100	S32760	24-26	6-8	3-4	0.03	0.2-0.3	0.5-1	W:0.5-1	37
Nickel-based + Mo	→ C-276	N10276	15.5-16.5	Ca. 57	15-17	0.01	-	-	W:3.5-4.5 Fe: 4-7	-
Nickel-based + Mo	→ C-4	N06455	16	Ca. 65	16	0.01	-	-	Fe:2	-
Nickel-based + Mo	→ C-22	N06022	20-22.5	Ca. 56	12.5-14.5	0.01	-	-	W: 2.5-3.5 Fe: 2-6	-
Nickel-based + Mo	→ C-2000	N06200	22-24	Ca. 67	15-17	0.01	-	1.3-1.9	Fe:3	-
Zirconium	→ Zr702	R60702	-	-	-	-	-	-	Hf: 2 Zr: Bal	-

Log (Current Density)

- Super austenitic 254 SMO = best candidate for pitting corrosion
- Corrosion rate of stainless steel in cement (CEM I): very low, not measurable. (< 0.01 nm/year)

Conclusions and open questions

Conclusions and open questions

• Uniform corrosion:

- v_{CORR}, volumetric method: 10 48 nm/year
- v_{CORR} , pressure transducer = 20 30 nm/year
- v_{CORR}, hydrogen sensor = 0.03 10 nm/year

• Pitting corrosion:

- Pits (due to chloride) cannot propagate under the expected conditions in the supercontainer
- Pits cannot reactivate during the anoxic period

Stress corrosion cracking

Currently no indication of increased susceptibility

Alternative solutions?

 ONDRAF/NIRAS currently keeps a technological eye on alternative canister material solutions

- Ceramic Materials and Coatings
 - Bulk materials: SiO₂/Al₂O₃ & SiC-Cr
 - Coatings: TiO₂ & CrN

- Metallic materials and coatings
 - Bulk materials: Cu alloys
 - Coatings: Cu, Ti, Cr, Cu/Al₂O₃