

Supplement of

Geomechanical in situ testing of fault reactivation in argillite repositories

Jens T. Birkholzer et al.

Correspondence to: Jens T. Birkholzer (jtbirkholzer@lbl.gov)

The copyright of individual parts of the supplement might differ from the article licence.

Geomechanical In Situ Testing of Fault Reactivation in Argillite Repositories

Jens Birkholzer¹, Yves Guglielmi¹, Christophe Nussbaum²,

¹ Energy Geosciences Division, Berkeley Lab, USA

² Mont Terri Project, swisstopo, Switzerland

Repository Induced Effects and Potential Impacts on Nearby Faults

- Waste emplacement causes temperature and pore pressure increase in host rock
- Gas generation causes pressure buildup and gas transport

Fault Reactivation Due to Stress Changes and Pore Pressure Buildup

Fault Reactivation in Argillite Host Rocks

Research Questions about Natural Barrier Integrity:

- What is the relationship between pressure buildup, fault opening, fault slip, and fluid migration in initially low-permeability faults?
- Under what conditions are permeable pathways generated and what are the underlying mechanisms?
- Are events leading to increased fault permeability associated with observable or even strong seismicity?
- What is the long-term hydrologic behavior of reactivated faults? Can sealing or healing be expected?
- What are the potential performance implications?

Mesoscale In Situ in Densely Monitored Fault Experiments

The Mont Terri Rock Lab Has a Perfect Fault for In Situ Seal Testing

A Testbed for Controlled Fault Injection Experiments: Elucidating the Coupling Between Pressure, Flow and Deformation

2015 Kick-Off Experiment:

Fundamental hydromechanical behavior of activated faults in a seal analog

2020, 2021, and 2023 Experiments: Follow-up injection experiments with larger patch size, longer injection and post-injection cycles, and additional monitoring

Passive Observations:

Long-term post-activation evolution of fault permeability

Multi-Modal Monitoring

SIMFIP = Step-Rate Injection Method for Fracture In-Situ Properties

CASSM = Continuous Active Seismic Source Monitoring

Impressions from Experimental Campaign

Test Procedure: Cycled Short-Term Injections with Rest Periods

Fault Reactivation Causes Strong Permeability Increase

Complex Coupling Between Displacement, Pressure, and Flow

From Point Measurements to Fault Patch Monitoring via CASSM

CASSM = Continuous Active Seismic Source Monitoring

Shear Displacements Before and During Injection

Long-Term Fault Behavior (Ongoing)

Key Findings from Fault Reactivation Studies in Argillites

- Fault reactivation causes a large permeability increase in the fault zone:
 - Fluid migrates in the initially very low permeability fault only AFTER the fault fails locally.
 - Slip signal precedes fluid arrival and creates some permeability in the slipdilatant rupture patch.
 - The patch opens further due to a large effective normal stress decrease.
 - This allows more fluid leakage to occur.
- Slip is largely aseismic thus hard to observe by micro-seismic monitoring
- As injection stops, we observe a rapid permeability drop followed by slow sealing and possibly healing of the fault

Fluid pressure migration and fault deformation with time

Next Steps: Fault Behavior at Elevated Temperature (Starting Soon)

Thermal Fault Slip Feasibility Experiment:

- Deploy a heat source into a single hole located outside the Main Fault in the same testbed
- Heat to about 80°C and passively monitor fault THM response using already deployed instruments
- Conduct fully coupled THM numerical modeling and use feasibility study results to design larger-scale dedicated THM experiment

Objective:

- Effects of injecting non-isothermal fluids on fault reactivation and permeability evolution
- More realistic experimental conditions and driving forces

A Testbed to Probe Effects of Distant Earthquakes on Barrier Integrity

A fault testbed nearby the major San Andreas Fault in California was established & instrumented in 2022. The site features 3-D displacement borehole sensors across the faults together with other long term monitoring tools.

Breaking News....Displacement Induced by Distant M_w 4.4 Earthquake

In April 2023, a Mw 4.4 earthquake occurred about 50 km away from the testbed site. The SIMFIP displacement sensor successfully recorded small fault displacements associated with this distant seismic event.

Thank you

