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Repository Induced Effects and Potential Impacts on Nearby Faults

* Waste emplacement causes
temperature and pore pressure
increase in host rock

* Gas generation causes pressure
buildup and gas transport




Fault Reactivation Due to Stress Changes and Pore Pressure Buildup
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Fault Reactivation in Argillite Host Rocks

Research Questions about Natural Barrier Integrity:

* What is the relationship between pressure buildup, fault
opening, fault slip, and fluid migration in initially low-
permeability faults?

* Under what conditions are permeable pathways
generated and what are the underlying mechanisms?

* Are events leading to increased fault permeability
associated with observable or even strong seismicity?

* What is the long-term hydrologic behavior of reactivated
faults? Can sealing or healing be expected?

* What are the potential performance implications?
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Mesoscale In Situ in Densely Monitored Fault Experiments
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The Mont Terri Rock Lab Has a Perfect Fault for In Situ Seal Testing
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From Laurich et al., Structural Geology, 2014; Solid Earth, 2018
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A Testbed for Controlled Fault Injection Experiments:
Elucidating the Coupling Between Pressure, Flow and Deformation

2015 Kick-Off Experiment:
Fundamental hydromechanical
behavior of activated faults in a seal
analog

2020, 2021, and 2023 Experiments:
Follow-up injection experiments with
larger patch size, longer injection and
post-injection cycles, and additional
monitoring

Passive Observations:
Long-term post-activation evolution of
fault permeability
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Multi-Modal Monitoring
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Test Procedure: Cycled Short-Term Injections with Rest Periods
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Permeability (m2)

Fault Reactivation Causes Strong Permeability Increase
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Complex Coupling Between Displacement, Pressure, and Flow
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From Point Measurements to Fault Patch Monitoring via CASSM
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Shear Displacements Before and During Injection
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Long-Term Fault Behavior (Ongoing)
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Key Findings from Fault Reactivation Studies in Argillites

» Fault reactivation causes a large
permeability increase in the fault zone:

- Fluid migrates in the initially very low
permeability fault only AFTER the fault fails
locally.

- Slip signal precedes fluid arrival and
creates some permeability in the slip-
dilatant rupture patch.

- The patch opens further due to a large
effective normal stress decrease.

- This allows more fluid leakage to occur.

 Slip is largely aseismic thus hard to
observe by micro-seismic monitoring

» As injection stops, we observe a rapid
permeability drop followed by slow
sealing and possibly healing of the fault

ARTICLES

nature |
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https://doi.org/10.1038/541561-022-00993-4

) Chock for updates

Fluid migration in low-permeability faults driven
by decoupling of fault slip and opening
Cappa et al., 2022
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Next Steps: Fault Behavior at Elevated Temperature (Starting Soon)

—

Thermal Fault Slip Feasibility Experiment:

» Deploy a heat source into a single hole located outside the
Main Fault in the same testbed -

» Heat to about 80°C and passively monitor fault THM
response using already deployed instruments

» Conduct fully coupled THM numerical modeling and use
feasibility study results to design larger-scale dedicated THM
experiment

Objective:

« Effects of injecting non-isothermal fluids on fault reactivation
and permeability evolution

« More realistic experimental conditions and driving forces




A Testbed to Probe Effects of Distant Earthquakes on Barrier Integrity

A fault testbed nearby the major San Andreas Fault in California was established & instrumented in 2022. The site
features 3-D displacement borehole sensors across the faults together with other long term monitoring tools.

Surface creepmeter .
Will be deployed during 2023 (collaboration with USGS, Open Hole

creen

Broadband 3C Active seismic

Accelerometer Source

Will be deployed
(500Hz) In 2023

Audio 3C accelerometers (48kHz)

eters (3seconds)
Weather station
Ia__ir_/Pair :Izmﬁﬁ‘sz °
% % == == RFS-DSS strain Optical fiber (2 months) : A S
©  Water Pressure (10 seconds)
NATURAL SEISMIC WAVES -«

150m

v




Breaking News....Displacement Induced by Distant M,, 4.4 Earthquake

In April 2023, a Mw 4.4 earthquake occurred about 50 km away from the testbed site. The SIMFIP displacement
sensor successfully recorded small fault displacements associated with this distant seismic event.
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