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The anisotropy of geomaterial granite
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Abstract. Granites appear to be isotropic, which qualifies them as suitable crystalline host rocks for nuclear
waste repository sites. However, despite their optical appearance, granites show a primary structural anisotropy
(Bouchez, 1997) that evolved during emplacement and crystallization of the melt. The major processes involved
are magmatic flow and oriented crystal growth (Müller et al., 2011). Hypothetically, it is expected that different
tectonic environments, i.e. different orientations of the stress tensor, cause significant differences in the primary
anisotropy, which is expressed by the crystallographic preferred orientation (CPO) of the rock-forming minerals.
It is likely that primary anisotropic petrophysical properties control the orientation of post-magmatic structural
features like extensional fractures and thus shape potential fluid pathways.

We present the first results of a systematic study of felsic plutonites, i.e. the GAME project (Gefüge, Textur-
und Anisotropie-Messungen von potenziell für die Endlagerung geeigneten Graniten zur Charakterisierung
möglicher Fluidwegsamkeiten). The samples of syn-Variscan felsic plutons from two sites (Erzgebirge and
Fichtelgebirge) represent different tectonic settings during intrusion: extension and compression. Furthermore,
they depict different stages of fractionation of the peraluminous granite suites. The CPOs were analysed using
the neutron time-of-flight (ToF) texture diffractometer SKAT (Keppler et al., 2014; Ullemeyer et al., 1998) and
EBSD (electron backscatter diffraction). Using scanning electron microscope (SEM) automated mineral libera-
tion analysis (Schulz et al., 2020), modal mineral compositions are quantified. This enables us to model primary
or “intrinsic” petrophysical properties for these granites based on the elastic stiffness tensor of the individual
rock-forming minerals (Mainprice et al., 2011). Main- and trace-element geochemical data (ICP-AES and ICP-
MS) allow for a characterization of the different magmatic settings of the samples.

All granites show distinct preferred orientations of rock-forming minerals. The quartz textures, for example,
exhibit similar CPOs, with point maxima of the positive rhombs in combination with small circles to crossed-
girdle c-axis distributions. However, the orientation with respect to the geographic reference system strongly
varies. We will discuss the CPOs in relation to the stress tensor orientation during emplacement of the felsic
plutons and compare the primary anisotropy with the post-magmatic fracture patterns of the particular granites.
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