

Supplement of

The $^{14}{\rm C}$ dose assessment model chain – $^{14}{\rm C}$ source term definition and uncertainty quantification

Susanne Pudollek et al.

Correspondence to: Susanne Pudollek (susanne.pudollek@nagra.ch)

The copyright of individual parts of the supplement might differ from the article licence.

THE ¹⁴C DOSE ASSESSMENT MODEL CHAIN – ¹⁴C SOURCE TERM DEFINITION AND UNCERTAINTY QUANTIFICATION

SafeND, Berlin, 14.09.2023

Susanne Pudollek, Valentyn Bykov, Typhaine Guillemot, Xiaoshuo Li

SWISS REPOSITORY CONCEPT

IMPORTANCE OF 14C

➤ Just a small number of nuclides are relevant for long term post closure dose

- ➢ Focus today: ¹⁴C
 - \rightarrow release from waste into fluid and gas phase \rightarrow high mobility within geosphere
 - \rightarrow half life of ca. 5700 a,
 - → C relevant as building block within biosphere
- Probabilistic dose assessments
 - Realistic modeling enables assessment of systems's robustness
 - Requires realistic input and parameter setting for models to
 - Goal troughout ¹⁴C model chain: best estimate + uncertainty

¹⁴C MODEL CHAIN

BE-Kopf

Brennstäbe

-Führungsstäbe

Abstandshalter

BE-Fuss

SWR

Brennstäbe

- Zentraler Wasserkanal

Reactor waste, NPP Gösgen

Lise

Reprocessing coquille

Model of a concrete container

¹⁴C inventory

BE-Kasten

Aktive Länge DWR

¹⁴C MODEL CHAIN

¹⁴C inventory

¹⁴C MODEL CHAIN

¹⁴C MODEL CHAIN

MIRAM-RBG – MODEL INVENTORY

MIRAM (Model Inventory of Radioactive Materials)

- Basis for long-term safety analyses
- Detailed average properties of reference package at time of production
 → waste package type = AGT
 - nuclide and material inventory, metal geometries and waste properties
- Based on ISRAM: database of existing waste packages + model types for future waste
 - used by all waste producers in CH and <u>Nagra</u> for radioactive material management.

- 87% of total ¹⁴C-activity in 10 AGTs (waste package types)
 - For a provide the second secon

¹⁴C – HLW-INVENTORY

- Inventory based on single SFAcalculations
 - ➤ emphasis on full repository inventory
 best estimate
 → nominal AGT inventory
- Inventory given for
 - Fuel itself
 - Active-length structural parts (e.g. cladding)
 - Additional structural parts (e.g. top and bottom end-pieces)
 - Allows material specific attribution of ¹⁴C-activity

14.09.2023

¹⁴C – HLW – UNCERTAINTY QUANTIFICATION

- Sources considered
 - Nuclear Data
 - Material impurities
 - Design parameters, operating parameters and history
- Perturbation calculations for representative SFA
- Distribution of activity

¹⁴C – L/ILW-INVENTORY

¹⁴C – L/ILW-INVENTORY

¹⁴C is primarly formed by the activation of ¹⁴N impurities

present in metals, mainly steel.

Precursor	Nuclear	Isotopic
isotope	reaction	abundance
		(%)
¹⁴ N	¹⁴ N(n,p) ¹⁴ C	99.632
¹⁷ O	¹⁷ O(n,α) ¹⁴ C	0.038
¹³ C	¹³ C(n,γ) ¹⁴ C	1.07

¹⁴C – ACTIVATED METALS - INVENTORY FROM NPPS

- Detailed activation calculations by Nagra
- Main source of ¹⁴C Core Internals
- Main source of uncertainties
 - Material composition = N-impurities
 - Approach for ¹⁴C:
 - **Best estimate** based on measurements where ____ available, literature review and estimates based on expert knowledge
 - Upper confidence limit based on expert knowledge \rightarrow «highest known» N-impurity

¹⁴C – L/ILW-INVENTORY

¹⁴C – CONTAMINATED WASTE - INVENTORY FROM MIR

- Detailed inquiry into
 - \rightarrow ¹⁴C-waste producers
 - \rightarrow ¹⁴C-waste properties
 - Estimations of future waste production and expected ¹⁴C-activities
 - → main source of uncertainty → best-estimate * («expert knowledge based» factor)
 - Spent fuel research
 - \rightarrow contaminated metallic, inorganic and organic waste
 - > Medicinal research \rightarrow ¹⁴C-labeling
 - \rightarrow contaminated organic waste
 - \rightarrow use in rapid decline (³H-labeling as main alternative)
 - Military equipment luminiscing paints/colours
 - \rightarrow BaCO₃
 - \rightarrow existing old equipment amount reassessed \rightarrow replaced nowadays by ³H and alternatives

¹⁴C SOURCE TERM

- from inventory to transport model source term
 - Release rate
 - Released species
 - > Dependent on ¹⁴C-containing material in repository conditions
- CAST-Project \rightarrow basis of international state of knowledge

- IGD-TP LOMIR → Long term monitoring of ¹⁴C compounds released during corrosion of irradiated steel
 - > (new) Partners welcome!

SPECIATION AND RELEASE OF ¹⁴C FROM L/ILW

SPECIATION AND RELEASE OF ¹⁴C FROM HLW

SUMMARY - 14C SOURCE TERM QUANTIFICATION

Goal \rightarrow realistic assessment base \rightarrow Best estimate + uncertainty

- Assumptions of ¹⁴C speciation and release are based on material
- ¹⁴C inventory (best estimate + unc.) captured in model inventory per waste type
- For each waste type ¹⁴C was assigned to one main ¹⁴C-bearing material
- Comprehensive source term of ¹⁴C-species and activities for the dose assessment model chain

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

······

