AREHS: effects of changing boundary conditions on the development of hydrogeological systems: numerical long-term modelling considering thermal–hydraulic–mechanical(–chemical) coupled effects
Within the framework of the “Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für hochradioaktive Abfälle” (Repository Site Selection Act – StandAG), the geoscientific and planning requirements and criteria for the site selection for a repository for high-active nuclear waste are specified. This includes, among others, the modelling of hydrogeological scenarios such as how future cold and warm periods and associated glaciation events can change the (petro-)physical properties specified in the StandAG as well as the natural hydrogeological properties of the overall system through, for example, reactivation of faults or changes in hydraulic gradients and consequently flow directions.
The main objective of the AREHS (Effects of Changing Boundary Conditions on the Development of Hydrogeological Systems) project, funded by BASE (Federal Office for the Safety of Nuclear Waste Management; FKZ 4719F10402), is to model the effects of changing external boundary conditions on the hydrogeologically relevant parameters and effects (e.g. hydraulic permeability, porosity, migration pathways, fluid availability, hydraulic gradients) of a generic geological repository in Germany in all three potential host rocks (clay, salt and crystalline rocks) and its surrounding hydrogeological setting (Table 1). Special attention is paid to the cyclic mechanical loading and unloading due to glaciation events and the resulting stress changes (M), as well as induced temperature effects (T) due to permafrost and warm periods. As such processes can cause changes in the coupled far-field regime with groundwater flow and groundwater supply (H), as well as fluid transport due to thermal (T) and chemical (C) gradients, and reactivate faults/fractures (M) and thus create new/additional pathways, they are particularly relevant to the integrity of a repository over a period of 1 million years and must be properly captured with coupled THM(C) modelling. Before a model is set up for the different host rocks, a detailed assessment of relevant processes has been conducted based on NEA-2019 FEP catalogue (NEA, 2019) for high-level waste repositories.
The modelling is performed using generic 3D models of typical host rock formations satisfying the StandAG criteria. Although the models for salt and clay rock have been adapted from generic models from recent research projects, for crystalline rock a new generic model had to be developed (Fig. 1) considering discontinuities of different scales that have to be incorporated into the THM(C) models explicitly as DFN (Discrete Fracture Network) networks. This is done by coupling two numerical codes: DFN-lab and 3DEC.
A central phase in the overall modelling process is the benchmarking of the models with data from existing models and with field-scale studies. This is done separately for all three host rocks.
In addition to extending the modelling capacities for glaciation processes and verifying by corresponding benchmarking tests (analytical solutions and literature comparisons), automated workflows have been developed to generate OpenGeoSys models from GOCAD structure models. Script-based automated workflows improve software quality for site investigation, especially in a sense of modularization as well as reproducibility. The generic workflow concept is currently being tested for the literature-based benchmarks and will, therefore, support a persistent and sustainable benchmarking procedure in the future.
Im Rahmen des Gesetzes zur Suche und Auswahl eines Standortes für ein Endlager für hochradioaktive Abfälle (StandAG), werden die geowissenschaftlichen und planerischen Anforderungen und Kriterien für die Standortauswahl für ein Endlager für hochradioaktive Abfälle festgelegt. Dies umfasst u. a. die Modellierung hydrogeologischer Szenarios, z. B. wie zukünftige Kalt- und Warmzeiten sowie damit verbundene Vergletscherungsereignisse die im StandAG festgelegten (petro-)physikalischen Eigenschaften verändern können, und außerdem die natürlichen hydrogeologischen Eigenschaften des Gesamtsystems, z. B. durch Reaktivierung von Verwerfungen oder Veränderungen von hydraulischen Gradienten und damit von Fließrichtungen.
Das Hauptziel des vom Bundesamt für die Sicherheit der nuklearen Entsorgung geförderten AREHS-Projekts (Auswirkungen sich ändernder Randbedingungen auf die Entwicklung hydrogeologischer Systeme, FKZ 4719F10402) ist die Modellierung der Effekte von sich verändernden äußeren Randbedingungen auf die hydrogeologisch relevanten Parameter (z. B. hydraulische Permeabilität, Porosität, Migrationswege, Flüssigkeitsverfügbarkeit, hydraulische Gradienten) eines geologischen Endlagers in Deutschland in allen drei potenziellen Wirtsgesteinen (Ton, Salz und kristallines Gestein) und seine hydrogeologische Umgebung (Tabelle 1). Besonderes Augenmerk gilt der zyklischen mechanischen Be- und Entlastung aufgrund von Vereisungsereignissen und den hierdurch hervorgerufenen Spannungsänderungen (M) sowie induzierten Temperatureffekten (T) aufgrund von Permafrost und Warmzeiten. Solche Prozesse können Veränderungen im gekoppelten Fernfeldregime mit Grundwasserfluss und Grundwasserdargebot (H) sowie Fluidtransport aufgrund thermischer (T) und chemischer Gradienten bewirken sowie Störungen/Klüfte (M) reaktivieren und damit neue/zusätzliche Wegsamkeiten schaffen. Deshalb sind sie besonders relevant für die Integrität eines Endlagers über den Zeitraum von einer Million Jahren und müssen mit gekoppelten THM-(C)-Modellierungen sachgerecht erfasst werden.
Vor der Erstellung des Modells für die verschiedenen Wirtsgesteine wurde eine detaillierte Bewertung der relevanten Prozesse auf Grundlage des FEP-Katalogs (NEA, 2019) für Endlager für hochradioaktive Abfälle durchgeführt. Die Modellierung erfolgt mit generischen 3D-Modellen typischer Wirtsgesteinformationen, die den StandAG-Kriterien entsprechen. Während die Modelle für Salz- und Tongestein auf generischen Modellen aus jüngeren Forschungsprojekten beruhen, musste für kristallines Gestein ein neues generisches Modell entwickelt werden (Abbildung 1), das Diskontinuitäten verschiedener Größenordnungen berücksichtigt, die in den THM(C)-Modellen explizit als DFN-Netzwerke einbezogen werden. Dies geschieht durch Kopplung der zwei numerischen Codes DFN-lab and 3DEC. Eine wesentliche Phase im gesamten Modellierungsprozess ist der Abgleich der Modelle mit Daten aus bestehenden Modellen und mit Studien im Feldmaßstab. Dies wird für alle drei Wirtsgesteine getrennt durchgeführt. Neben der Erweiterung der Modellierungskapazitäten für Vergletscherungsprozesse und der Verifizierung durch entsprechende Vergleichstests (analytische Lösungen und Fachliteratur) wurden automatisierte Workflows entwickelt, um OpenGeoSys-Modelle aus Gocad-Strukturmodellen zu entwickeln. Scriptbasierte automatisierte Workflows verbessern die Softwarequalität für Standorterkundungen insbesondere in punkto Modularisierung und Reproduzierbarkeit. Das generische Workflow-Konzept wird derzeit für die Literatur-Benchmarks getestet und deshalb künftig ein dauerhaftes und nachhaltiges Benchmarking-Verfahren unterstützen.