Articles | Volume 2
https://doi.org/10.5194/sand-2-107-2023
https://doi.org/10.5194/sand-2-107-2023
Conference Abstract
 | 
06 Sep 2023
Conference Abstract |  | 06 Sep 2023

Characterising a rock fracture rough surface using spatial continuity and kriging: a new approach to meshing coupled thermo–hydraulic–mechanical–chemical (THMC) models

Gonçalo B. Cunha and Christopher Ian McDermott

Related authors

Rate-dependence of the compressive and tensile strength of granites
Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, and Zoe Shipton
Adv. Geosci., 62, 11–19, https://doi.org/10.5194/adgeo-62-11-2023,https://doi.org/10.5194/adgeo-62-11-2023, 2023
Short summary
Conceptual model development using a generic Features, Events, and Processes (FEP) database for assessing the potential impact of hydraulic fracturing on groundwater aquifers
Alexandru Tatomir, Christopher McDermott, Jacob Bensabat, Holger Class, Katriona Edlmann, Reza Taherdangkoo, and Martin Sauter
Adv. Geosci., 45, 185–192, https://doi.org/10.5194/adgeo-45-185-2018,https://doi.org/10.5194/adgeo-45-185-2018, 2018
Short summary
Download
Short summary
The flow of water through fractured aquifers can be simulated with computer software. For a single fracture, a map of the empty space (aperture) between the two faces is required. Traditionally, this is fed to the software by sampling the frequency distribution or upscaling. This study analyses a greywacke's fracture roughness spatial continuity (how points are correlated in direction and distance) and creates an upscaled aperture map for computer simulations that better represents reality.