Numerical assessment of the barrier integrity for a generic nuclear waste repository in crystalline rock
Carlos Guevara Morel
CORRESPONDING AUTHOR
Department of Geotechnical Safety Analyses, Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
Jobst Maßmann
Department of Geotechnical Safety Analyses, Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
Jan Thiedau
Department of Geotechnical Safety Analyses, Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
Related authors
Carlos Guevara Morel, Jobst Maßmann, and Jan Thiedau
Saf. Nucl. Waste Disposal, 1, 173–174, https://doi.org/10.5194/sand-1-173-2021, https://doi.org/10.5194/sand-1-173-2021, 2021
Thomas Nagel, Maximilian Bittens, Jörg Buchwald, Aqeel A. Chaudhry, Oliver G. Ernst, Werner Gräsle, Feliks Kiszkurno, Kata Kurgyis, Jobst Maßmann, Sibylle Mayr, Jan Thiedau, and Chao Zhang
Saf. Nucl. Waste Disposal, 2, 93–94, https://doi.org/10.5194/sand-2-93-2023, https://doi.org/10.5194/sand-2-93-2023, 2023
Short summary
Short summary
Computer simulations are used to understand processes in nuclear waste disposal. The results are used to judge the safety of waste repository. Not all the information needed for such analyses, e.g. rock properties, is precisely known, contributing to uncertainty in the analysis results. We are interested in understanding the effect of the uncertainty of input quantities and of certain simplifications made during model creation on the outcome of computer simulations.
Larissa Friedenberg, Jeroen Bartol, James Bean, Steffen Beese, Hendrik Bollmann, Hans J. P. de Bresser, Jibril Coulibaly, Oliver Czaikowski, Uwe Düsterloh, Ralf Eickemeier, Ann-Kathrin Gartzke, Suzanne Hangx, Ben Laurich, Christian Lerch, Svetlana Lerche, Wenting Liu, Christoph Lüdeling, Melissa M. Mills, Nina Müller-Hoeppe, Bart van Oosterhout, Till Popp, Ole Rabbel, Michael Rahmig, Benjamin Reedlunn, Christopher Rölke, Christopher Spiers, Kristoff Svensson, Jan Thiedau, and Kornelia Zemke
Saf. Nucl. Waste Disposal, 2, 109–111, https://doi.org/10.5194/sand-2-109-2023, https://doi.org/10.5194/sand-2-109-2023, 2023
Short summary
Short summary
For the deep geological disposal of high-level nuclear waste in rock salt formations, the safety concept includes the backfilling of open cavities with crushed salt. For the prognosis of the sealing function of the backfill for the safe containment of the nuclear waste, it is crucial to have a comprehensive process understanding of the crushed-salt compaction behavior. The KOMPASS projects were initiated to improve the scientific knowledge of using crushed salt as backfill material.
Tuanny Cajuhi, Jobst Maßmann, Gesa Ziefle, Thomas Nagel, and Keita Yoshioka
Saf. Nucl. Waste Disposal, 2, 105–106, https://doi.org/10.5194/sand-2-105-2023, https://doi.org/10.5194/sand-2-105-2023, 2023
Short summary
Short summary
Understanding complex systems such as radioactive waste repositories involves the study of cross-scale coupled processes. We discuss some important concepts and their mutual interactions for interpreting such systems based on complementary model-based analyses at various scales. One goal statement is to explain the formation of drying cracks. Near-field understanding can be used to determine how detailed repository far-field models must be and can lead to more robust analysis results.
Jan Thiedau, Maximilian Bittens, Jobst Maßmann, and Sibylle Mayr
Saf. Nucl. Waste Disposal, 2, 103–103, https://doi.org/10.5194/sand-2-103-2023, https://doi.org/10.5194/sand-2-103-2023, 2023
Short summary
Short summary
The assessment of the integrity of the geological barrier for repositories for nuclear waste can be significantly influenced by uncertainties in the model inputs. Hence, the results of these established integrity analyses should be enriched by statistical information. In this contribution, we present preliminary probabilistic results for rock integrity assessment for the generic repository system in clay rock and the developed tools for stochastic analyses.
Carlos Guevara Morel, Jobst Maßmann, and Jan Thiedau
Saf. Nucl. Waste Disposal, 1, 173–174, https://doi.org/10.5194/sand-1-173-2021, https://doi.org/10.5194/sand-1-173-2021, 2021
Tuanny Cajuhi, Jobst Maßmann, and Gesa Ziefle
Saf. Nucl. Waste Disposal, 1, 165–167, https://doi.org/10.5194/sand-1-165-2021, https://doi.org/10.5194/sand-1-165-2021, 2021
Short summary
Short summary
This contribution aims at showing the basic, practical steps for numerical modeling with focus on the preparation and interpretation of the models and results, e.g. model calibration, verification and validation. We study the Opalinus Clay and perform laboratory and field scale simulations related to nearly the same mechanism, e.g. drying/wetting, shrinkage/swelling and cracking. We simulate the long-term Cyclic Deformation (CD-A) experiment in the Mont Terri Rock Laboratory.
Gesa Ziefle, Tuanny Cajuhi, Sebastian Condamin, Stephan Costabel, Oliver Czaikowski, Antoine Fourriére, Larissa Friedenberg, Markus Furche, Nico Graebling, Bastian Graupner, Jürgen Hesser, David Jaeggi, Kyra Jantschik, Tilo Kneuker, Olaf Kolditz, Franz Königer, Herbert Kunz, Ben Laurich, Jobst Maßmann, Christian Ostertag-Henning, Dorothee Rebscher, Karsten Rink, Wolfram Rühaak, Senecio Schefer, Rainer Schuhmann, Marc Wengler, and Klaus Wieczorek
Saf. Nucl. Waste Disposal, 1, 79–81, https://doi.org/10.5194/sand-1-79-2021, https://doi.org/10.5194/sand-1-79-2021, 2021
Short summary
This contribution focuses on the numerical assesment of the barrier integrity of a generic nuclear repository in crytalline rock.
This contribution focuses on the numerical assesment of the barrier integrity of a generic...