Methods for the quantification of uncertainties in thermo–hydro–mechanical simulations for safety analyses and influence of modelling decisions
Thomas Nagel
CORRESPONDING AUTHOR
Geotechnical Institute, Technische Universität Bergakademie
Freiberg, 09559 Freiberg, Germany
Maximilian Bittens
Geotechnical Safety Analyses, Federal Institute of Geosciences and Natural Resources – BGR, 30655 Hanover, Germany
Jörg Buchwald
Department of Environmental Informatics, Helmholtz Centre for
Environmental Research GmbH – UFZ, 04318 Leipzig, Germany
Aqeel A. Chaudhry
Geotechnical Institute, Technische Universität Bergakademie
Freiberg, 09559 Freiberg, Germany
Oliver G. Ernst
Numerical Analysis, Technische Universität Chemnitz, 09107
Chemnitz, Germany
Werner Gräsle
Geotechnical Safety Analyses, Federal Institute of Geosciences and Natural Resources – BGR, 30655 Hanover, Germany
Feliks Kiszkurno
Department of Environmental Informatics, Helmholtz Centre for
Environmental Research GmbH – UFZ, 04318 Leipzig, Germany
Geotechnical Institute, Technische Universität Bergakademie
Freiberg, 09559 Freiberg, Germany
Kata Kurgyis
Geotechnical Institute, Technische Universität Bergakademie
Freiberg, 09559 Freiberg, Germany
Jobst Maßmann
Geotechnical Safety Analyses, Federal Institute of Geosciences and Natural Resources – BGR, 30655 Hanover, Germany
Sibylle Mayr
Geotechnical Safety Analyses, Federal Institute of Geosciences and Natural Resources – BGR, 30655 Hanover, Germany
Jan Thiedau
Geotechnical Safety Analyses, Federal Institute of Geosciences and Natural Resources – BGR, 30655 Hanover, Germany
Chao Zhang
Numerical Analysis, Technische Universität Chemnitz, 09107
Chemnitz, Germany
Related authors
Matthias Hinze, Klaus Wieczorek, Katja Emmerich, Jürgen Hesser, Markus Furche, Hua Shao, David Jaeggi, Senecio Schefer, Thomas Nagel, Juan Carlos Mayor, Simon Norris, Kim Chang-Seok, Philipp Schädle, José Luis García-Siñeriz, Rainer Schuhmann, Franz Königer, Uwe Glaubach, Christopher Rölke, and Ralf Diedel
Saf. Nucl. Waste Disposal, 2, 175–176, https://doi.org/10.5194/sand-2-175-2023, https://doi.org/10.5194/sand-2-175-2023, 2023
Short summary
Short summary
The SW-A experiment is a large-scale in situ test at the Mont Terri rock laboratory that implements a vertical hydraulic shaft-sealing system in argillaceous host rock. The response of the system and the surrounding rock to hydration is examined. The experiment objectives are to demonstrate the feasibility of installation, to investigate the saturation process, to qualify measurement and monitoring techniques, and to assess the sealing effectiveness. Recent data and experience are presented.
Tuanny Cajuhi, Jobst Maßmann, Gesa Ziefle, Thomas Nagel, and Keita Yoshioka
Saf. Nucl. Waste Disposal, 2, 105–106, https://doi.org/10.5194/sand-2-105-2023, https://doi.org/10.5194/sand-2-105-2023, 2023
Short summary
Short summary
Understanding complex systems such as radioactive waste repositories involves the study of cross-scale coupled processes. We discuss some important concepts and their mutual interactions for interpreting such systems based on complementary model-based analyses at various scales. One goal statement is to explain the formation of drying cracks. Near-field understanding can be used to determine how detailed repository far-field models must be and can lead to more robust analysis results.
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedtke, Tobias Meisel, Florian Zill, Anton Carl, Aron D. Gabriel, and Marcel Schlegel
Saf. Nucl. Waste Disposal, 2, 117–118, https://doi.org/10.5194/sand-2-117-2023, https://doi.org/10.5194/sand-2-117-2023, 2023
Short summary
Short summary
In the AREHS project, the effect of the alternation of cold and warm periods over 1 million years on the hydrogeological system in the vicinity of a repository was simulated. This was done with thermal–hydraulic–mechanical (–chemical) simulations. The simulations were implemented for generic 3D models for all three host rock formations: clay rock, salt rock and crystalline rock. In addition to the results for the generic sites, a workflow was developed that can be applied to concrete sites.
Dominik Kern, Fabien Magri, Victor I. Malkovsky, and Thomas Nagel
Saf. Nucl. Waste Disposal, 1, 179–180, https://doi.org/10.5194/sand-1-179-2021, https://doi.org/10.5194/sand-1-179-2021, 2021
Short summary
Short summary
We try to assess the integrity of storage sites for nuclear waste in case of an earthquake, particularly for sites in crystalline rocks, such as granite.
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedke, Tobias Meisel, Karsten Rink, Wenqing Wang, Florian Zill, Antje Carl, Aron D. Gabriel, Marcel Schlegel, and Torsten Abraham
Saf. Nucl. Waste Disposal, 1, 175–177, https://doi.org/10.5194/sand-1-175-2021, https://doi.org/10.5194/sand-1-175-2021, 2021
Short summary
Short summary
In the framework of the Site Selection Act – StandAG, the geoscientific and planning requirements and criteria for the site selection for a repository for high-active nuclear waste are specified. This includes, among others, the modelling of hydrogeological scenarios such as how future cold and warm periods and associated glaciation events can change the (petro-)physical properties as well as the natural hydrogeological properties of the overall system which is the focus of the AREHS project.
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Gregor Giebel, Thomas Nagel, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 49, 31–35, https://doi.org/10.5194/adgeo-49-31-2019, https://doi.org/10.5194/adgeo-49-31-2019, 2019
Sandra Schumacher and Werner Gräsle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1074, https://doi.org/10.5194/egusphere-2024-1074, 2024
Short summary
Short summary
Under German law, the crack damage stress must not be reached at any time during the operation or post-closure phase of a nuclear waste repository. This legal requirement can only be fulfilled if the parameter can be measured precisely. We have thus developed a new measurement technique, which overcomes the limitations of the conventional method. In combination, old and new method offer an easy procedure to detect the crack damage stress in fully saturated rocks in a fast and robust manner.
Sandra Schumacher and Werner Gräsle
Saf. Nucl. Waste Disposal, 2, 75–75, https://doi.org/10.5194/sand-2-75-2023, https://doi.org/10.5194/sand-2-75-2023, 2023
Short summary
Short summary
The current site selection process foresees 11 months for the laboratory analysis of geomechanical rock properties. Given the low permeability of claystones, paying heed to the hydromechanical coupling which governs all geomechanical processes slows down the lab experiments on claystones considerably, compared to other rock types. We show how to carefully plan the experiments and how to identify synergies in order to stay within the time frame of the site selection process.
Larissa Friedenberg, Jeroen Bartol, James Bean, Steffen Beese, Hendrik Bollmann, Hans J. P. de Bresser, Jibril Coulibaly, Oliver Czaikowski, Uwe Düsterloh, Ralf Eickemeier, Ann-Kathrin Gartzke, Suzanne Hangx, Ben Laurich, Christian Lerch, Svetlana Lerche, Wenting Liu, Christoph Lüdeling, Melissa M. Mills, Nina Müller-Hoeppe, Bart van Oosterhout, Till Popp, Ole Rabbel, Michael Rahmig, Benjamin Reedlunn, Christopher Rölke, Christopher Spiers, Kristoff Svensson, Jan Thiedau, and Kornelia Zemke
Saf. Nucl. Waste Disposal, 2, 109–111, https://doi.org/10.5194/sand-2-109-2023, https://doi.org/10.5194/sand-2-109-2023, 2023
Short summary
Short summary
For the deep geological disposal of high-level nuclear waste in rock salt formations, the safety concept includes the backfilling of open cavities with crushed salt. For the prognosis of the sealing function of the backfill for the safe containment of the nuclear waste, it is crucial to have a comprehensive process understanding of the crushed-salt compaction behavior. The KOMPASS projects were initiated to improve the scientific knowledge of using crushed salt as backfill material.
Matthias Hinze, Klaus Wieczorek, Katja Emmerich, Jürgen Hesser, Markus Furche, Hua Shao, David Jaeggi, Senecio Schefer, Thomas Nagel, Juan Carlos Mayor, Simon Norris, Kim Chang-Seok, Philipp Schädle, José Luis García-Siñeriz, Rainer Schuhmann, Franz Königer, Uwe Glaubach, Christopher Rölke, and Ralf Diedel
Saf. Nucl. Waste Disposal, 2, 175–176, https://doi.org/10.5194/sand-2-175-2023, https://doi.org/10.5194/sand-2-175-2023, 2023
Short summary
Short summary
The SW-A experiment is a large-scale in situ test at the Mont Terri rock laboratory that implements a vertical hydraulic shaft-sealing system in argillaceous host rock. The response of the system and the surrounding rock to hydration is examined. The experiment objectives are to demonstrate the feasibility of installation, to investigate the saturation process, to qualify measurement and monitoring techniques, and to assess the sealing effectiveness. Recent data and experience are presented.
Tuanny Cajuhi, Jobst Maßmann, Gesa Ziefle, Thomas Nagel, and Keita Yoshioka
Saf. Nucl. Waste Disposal, 2, 105–106, https://doi.org/10.5194/sand-2-105-2023, https://doi.org/10.5194/sand-2-105-2023, 2023
Short summary
Short summary
Understanding complex systems such as radioactive waste repositories involves the study of cross-scale coupled processes. We discuss some important concepts and their mutual interactions for interpreting such systems based on complementary model-based analyses at various scales. One goal statement is to explain the formation of drying cracks. Near-field understanding can be used to determine how detailed repository far-field models must be and can lead to more robust analysis results.
Carlos Guevara Morel, Jobst Maßmann, and Jan Thiedau
Saf. Nucl. Waste Disposal, 2, 115–115, https://doi.org/10.5194/sand-2-115-2023, https://doi.org/10.5194/sand-2-115-2023, 2023
Short summary
Short summary
This contribution focuses on the numerical assesment of the barrier integrity of a generic nuclear repository in crytalline rock.
Jan Thiedau, Maximilian Bittens, Jobst Maßmann, and Sibylle Mayr
Saf. Nucl. Waste Disposal, 2, 103–103, https://doi.org/10.5194/sand-2-103-2023, https://doi.org/10.5194/sand-2-103-2023, 2023
Short summary
Short summary
The assessment of the integrity of the geological barrier for repositories for nuclear waste can be significantly influenced by uncertainties in the model inputs. Hence, the results of these established integrity analyses should be enriched by statistical information. In this contribution, we present preliminary probabilistic results for rock integrity assessment for the generic repository system in clay rock and the developed tools for stochastic analyses.
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedtke, Tobias Meisel, Florian Zill, Anton Carl, Aron D. Gabriel, and Marcel Schlegel
Saf. Nucl. Waste Disposal, 2, 117–118, https://doi.org/10.5194/sand-2-117-2023, https://doi.org/10.5194/sand-2-117-2023, 2023
Short summary
Short summary
In the AREHS project, the effect of the alternation of cold and warm periods over 1 million years on the hydrogeological system in the vicinity of a repository was simulated. This was done with thermal–hydraulic–mechanical (–chemical) simulations. The simulations were implemented for generic 3D models for all three host rock formations: clay rock, salt rock and crystalline rock. In addition to the results for the generic sites, a workflow was developed that can be applied to concrete sites.
Carlos Guevara Morel, Jobst Maßmann, and Jan Thiedau
Saf. Nucl. Waste Disposal, 1, 173–174, https://doi.org/10.5194/sand-1-173-2021, https://doi.org/10.5194/sand-1-173-2021, 2021
Tuanny Cajuhi, Jobst Maßmann, and Gesa Ziefle
Saf. Nucl. Waste Disposal, 1, 165–167, https://doi.org/10.5194/sand-1-165-2021, https://doi.org/10.5194/sand-1-165-2021, 2021
Short summary
Short summary
This contribution aims at showing the basic, practical steps for numerical modeling with focus on the preparation and interpretation of the models and results, e.g. model calibration, verification and validation. We study the Opalinus Clay and perform laboratory and field scale simulations related to nearly the same mechanism, e.g. drying/wetting, shrinkage/swelling and cracking. We simulate the long-term Cyclic Deformation (CD-A) experiment in the Mont Terri Rock Laboratory.
Dominik Kern, Fabien Magri, Victor I. Malkovsky, and Thomas Nagel
Saf. Nucl. Waste Disposal, 1, 179–180, https://doi.org/10.5194/sand-1-179-2021, https://doi.org/10.5194/sand-1-179-2021, 2021
Short summary
Short summary
We try to assess the integrity of storage sites for nuclear waste in case of an earthquake, particularly for sites in crystalline rocks, such as granite.
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedke, Tobias Meisel, Karsten Rink, Wenqing Wang, Florian Zill, Antje Carl, Aron D. Gabriel, Marcel Schlegel, and Torsten Abraham
Saf. Nucl. Waste Disposal, 1, 175–177, https://doi.org/10.5194/sand-1-175-2021, https://doi.org/10.5194/sand-1-175-2021, 2021
Short summary
Short summary
In the framework of the Site Selection Act – StandAG, the geoscientific and planning requirements and criteria for the site selection for a repository for high-active nuclear waste are specified. This includes, among others, the modelling of hydrogeological scenarios such as how future cold and warm periods and associated glaciation events can change the (petro-)physical properties as well as the natural hydrogeological properties of the overall system which is the focus of the AREHS project.
Gesa Ziefle, Tuanny Cajuhi, Sebastian Condamin, Stephan Costabel, Oliver Czaikowski, Antoine Fourriére, Larissa Friedenberg, Markus Furche, Nico Graebling, Bastian Graupner, Jürgen Hesser, David Jaeggi, Kyra Jantschik, Tilo Kneuker, Olaf Kolditz, Franz Königer, Herbert Kunz, Ben Laurich, Jobst Maßmann, Christian Ostertag-Henning, Dorothee Rebscher, Karsten Rink, Wolfram Rühaak, Senecio Schefer, Rainer Schuhmann, Marc Wengler, and Klaus Wieczorek
Saf. Nucl. Waste Disposal, 1, 79–81, https://doi.org/10.5194/sand-1-79-2021, https://doi.org/10.5194/sand-1-79-2021, 2021
Ben Laurich, Jürgen Hesser, Sibylle Mayr, Lisa Winhausen, Amin Ghanizadeh, Antonia Nitsch, Julia Leuthold, Christian Weber, and Garri Gaus
Saf. Nucl. Waste Disposal, 1, 299–300, https://doi.org/10.5194/sand-1-299-2021, https://doi.org/10.5194/sand-1-299-2021, 2021
Kristof Schuster, Markus Furche, Hua Shao, Jürgen Hesser, Jan-Martin Hertzsch, Werner Gräsle, and Dorothee Rebscher
Adv. Geosci., 49, 175–186, https://doi.org/10.5194/adgeo-49-175-2019, https://doi.org/10.5194/adgeo-49-175-2019, 2019
Short summary
Short summary
The Federal Institute for Geosciences and Natural Resources (BGR) performs experiments in the Swiss Mont Terri rock laboratory to obtain a comprehensive understanding of the evolution of a repository. Activities and results by BGR from actual and still ongoing experiments are presented exemplarily focusing on main aspects regarding the behaviour of underground facilities. BGR's focus lies mainly on aspects of the construction, post-closure transient, and partly post-closure equilibrium phases.
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Gregor Giebel, Thomas Nagel, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 49, 31–35, https://doi.org/10.5194/adgeo-49-31-2019, https://doi.org/10.5194/adgeo-49-31-2019, 2019
Short summary
Computer simulations are used to understand processes in nuclear waste disposal. The results are used to judge the safety of waste repository. Not all the information needed for such analyses, e.g. rock properties, is precisely known, contributing to uncertainty in the analysis results. We are interested in understanding the effect of the uncertainty of input quantities and of certain simplifications made during model creation on the outcome of computer simulations.
Computer simulations are used to understand processes in nuclear waste disposal. The results are...