Hydro-mechanical effects of seismic events in crystalline rock barriers
Dominik Kern
CORRESPONDING AUTHOR
Institute for Geotechnics, TU Bergakademie Freiberg, Freiberg, Germany
Fabien Magri
Division Task-related Research, Federal Office for the Safety of Nuclear Waste Management, Berlin, Germany
Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
Victor I. Malkovsky
Institute of Geology of Ore Deposits and Petrography and Mineralogy and Geochemistry, Russian Academy of Sciences, Moscow, Russia
Thomas Nagel
Institute for Geotechnics, TU Bergakademie Freiberg, Freiberg, Germany
Related authors
No articles found.
Thomas Nagel, Maximilian Bittens, Jörg Buchwald, Aqeel A. Chaudhry, Oliver G. Ernst, Werner Gräsle, Feliks Kiszkurno, Kata Kurgyis, Jobst Maßmann, Sibylle Mayr, Jan Thiedau, and Chao Zhang
Saf. Nucl. Waste Disposal, 2, 93–94, https://doi.org/10.5194/sand-2-93-2023, https://doi.org/10.5194/sand-2-93-2023, 2023
Short summary
Short summary
Computer simulations are used to understand processes in nuclear waste disposal. The results are used to judge the safety of waste repository. Not all the information needed for such analyses, e.g. rock properties, is precisely known, contributing to uncertainty in the analysis results. We are interested in understanding the effect of the uncertainty of input quantities and of certain simplifications made during model creation on the outcome of computer simulations.
Matthias Hinze, Klaus Wieczorek, Katja Emmerich, Jürgen Hesser, Markus Furche, Hua Shao, David Jaeggi, Senecio Schefer, Thomas Nagel, Juan Carlos Mayor, Simon Norris, Kim Chang-Seok, Philipp Schädle, José Luis García-Siñeriz, Rainer Schuhmann, Franz Königer, Uwe Glaubach, Christopher Rölke, and Ralf Diedel
Saf. Nucl. Waste Disposal, 2, 175–176, https://doi.org/10.5194/sand-2-175-2023, https://doi.org/10.5194/sand-2-175-2023, 2023
Short summary
Short summary
The SW-A experiment is a large-scale in situ test at the Mont Terri rock laboratory that implements a vertical hydraulic shaft-sealing system in argillaceous host rock. The response of the system and the surrounding rock to hydration is examined. The experiment objectives are to demonstrate the feasibility of installation, to investigate the saturation process, to qualify measurement and monitoring techniques, and to assess the sealing effectiveness. Recent data and experience are presented.
Tuanny Cajuhi, Jobst Maßmann, Gesa Ziefle, Thomas Nagel, and Keita Yoshioka
Saf. Nucl. Waste Disposal, 2, 105–106, https://doi.org/10.5194/sand-2-105-2023, https://doi.org/10.5194/sand-2-105-2023, 2023
Short summary
Short summary
Understanding complex systems such as radioactive waste repositories involves the study of cross-scale coupled processes. We discuss some important concepts and their mutual interactions for interpreting such systems based on complementary model-based analyses at various scales. One goal statement is to explain the formation of drying cracks. Near-field understanding can be used to determine how detailed repository far-field models must be and can lead to more robust analysis results.
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedtke, Tobias Meisel, Florian Zill, Anton Carl, Aron D. Gabriel, and Marcel Schlegel
Saf. Nucl. Waste Disposal, 2, 117–118, https://doi.org/10.5194/sand-2-117-2023, https://doi.org/10.5194/sand-2-117-2023, 2023
Short summary
Short summary
In the AREHS project, the effect of the alternation of cold and warm periods over 1 million years on the hydrogeological system in the vicinity of a repository was simulated. This was done with thermal–hydraulic–mechanical (–chemical) simulations. The simulations were implemented for generic 3D models for all three host rock formations: clay rock, salt rock and crystalline rock. In addition to the results for the generic sites, a workflow was developed that can be applied to concrete sites.
Fabien Magri, Ingo Kock, Judith Krohn, Florian Krob, Veronika Ustohalova, Stefan Wittek, and Dimitri Bratzel
Saf. Nucl. Waste Disposal, 2, 139–140, https://doi.org/10.5194/sand-2-139-2023, https://doi.org/10.5194/sand-2-139-2023, 2023
Short summary
Short summary
In this project, an assessment tool is developed to evaluate the applicability of AI methods in geosciences with respect to key geological activities in the site selection process. The results show that AI should not have any decision-making power when used in the site selection process. It is strongly recommended that all methods should be evaluated and validated iteratively and that the results should be made publicly available when applied to the key activities of the site selection process.
Marek Pekala, Carl Rudolf Dietl, Fabiano Magri, and Ingo Kock
Saf. Nucl. Waste Disposal, 2, 125–125, https://doi.org/10.5194/sand-2-125-2023, https://doi.org/10.5194/sand-2-125-2023, 2023
Short summary
Short summary
DECOVALEX is an international collaborative project aiming to develop models simulating coupled thermal–hydro–chemical–mechanical processes for use in performance and safety assessment of disposal systems for high-level radioactive waste. BASE actively contributes to Task F, which seeks to build confidence in performance assessment methodologies. This contribution describes recent BASE activities within Task F Salt of DECOVALEX-2023, including lessons learnt and possible future steps.
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedke, Tobias Meisel, Karsten Rink, Wenqing Wang, Florian Zill, Antje Carl, Aron D. Gabriel, Marcel Schlegel, and Torsten Abraham
Saf. Nucl. Waste Disposal, 1, 175–177, https://doi.org/10.5194/sand-1-175-2021, https://doi.org/10.5194/sand-1-175-2021, 2021
Short summary
Short summary
In the framework of the Site Selection Act – StandAG, the geoscientific and planning requirements and criteria for the site selection for a repository for high-active nuclear waste are specified. This includes, among others, the modelling of hydrogeological scenarios such as how future cold and warm periods and associated glaciation events can change the (petro-)physical properties as well as the natural hydrogeological properties of the overall system which is the focus of the AREHS project.
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Gregor Giebel, Thomas Nagel, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 49, 31–35, https://doi.org/10.5194/adgeo-49-31-2019, https://doi.org/10.5194/adgeo-49-31-2019, 2019
Nimrod Inbar, Eliahu Rosenthal, Fabien Magri, Marwan Alraggad, Peter Möller, Akiva Flexer, Joseph Guttman, and Christian Siebert
Hydrol. Earth Syst. Sci., 23, 763–771, https://doi.org/10.5194/hess-23-763-2019, https://doi.org/10.5194/hess-23-763-2019, 2019
Short summary
Short summary
In areas of enigmatic hydrology, water scarcity, and transboundary water resources, management strategies should rely on comprehensive modeling which must be based on realistic geometry, including all relevant structural features. Based on available geophysical and geological data, a new faulting pattern in the Lower Yarmouk Gorge is suggested as a basis for hydrogeological modeling. Furthermore, unexpected pull-apart basin rim fault evolution is discussed in the context of tectonic collision.
Short summary
We try to assess the integrity of storage sites for nuclear waste in case of an earthquake, particularly for sites in crystalline rocks, such as granite.
We try to assess the integrity of storage sites for nuclear waste in case of an earthquake,...