International collaboration in disposal research: comparative modeling of coupled processes in the DECOVALEX project
Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
Alex Bond
Quintessa Ltd., Warrington, UK
Related authors
Jens T. Birkholzer, Yves Guglielmi, and Christophe Nussbaum
Saf. Nucl. Waste Disposal, 2, 61–62, https://doi.org/10.5194/sand-2-61-2023, https://doi.org/10.5194/sand-2-61-2023, 2023
Short summary
Short summary
This presentation discusses a series of in situ experiments of fault activation by fluid injection conducted in argillite rock at the Mont Terri underground research laboratory in Switzerland to better understand whether pressurization of natural faults can lead to their reactivation and permeability generation in case such features are present near disposal tunnels. Lessons learned from these experiments help inform the safety assessment of geologic disposal in argillite host rock.
Jens T. Birkholzer, LianGe Zheng, Prasad Nair, and Timothy Gunter
Saf. Nucl. Waste Disposal, 2, 29–30, https://doi.org/10.5194/sand-2-29-2023, https://doi.org/10.5194/sand-2-29-2023, 2023
Short summary
Short summary
More than a decade ago, the US Department of Energy (DOE) initiated a new research and development (R&D) program to provide a sound technical basis for geologic disposal options across clay, crystalline, and salt host rocks. The program established partnerships with international institutions and developed a number of collaborative R&D activities. This presentation gives an overview of these activities, with a focus on the coupled processes occurring in engineered and natural barriers.
Liange Zheng, Chun Chang, Sharon Borglin, Sangcheol Yoon, Chunwei Chou, Yuxin Wu, and Jens T. Birkholzer
Saf. Nucl. Waste Disposal, 2, 181–182, https://doi.org/10.5194/sand-2-181-2023, https://doi.org/10.5194/sand-2-181-2023, 2023
Short summary
Short summary
Bentonite buffer surrounding the waste canister is a critical part of the multi-barrier system for high-level radioactive waste geological repositories that undergo heating from heat-emitting waste and hydration from the host rock. Thus, extensive research was conducted to study the alteration of bentonite due to heating and hydration under high temperatures (200 °C); this work provides valuable data for model validation.
Jens T. Birkholzer, Liange Zheng, and Jonny Rutqvist
Saf. Nucl. Waste Disposal, 1, 83–84, https://doi.org/10.5194/sand-1-83-2021, https://doi.org/10.5194/sand-1-83-2021, 2021
Short summary
Short summary
This presentation gives on overview of the complex thermo-hydro-mechanical and chemical (THMC) processes occurring upon the disposal of heat-producing high-level radioactive waste in geologic repositories. Here, we present initial investigations of repository behavior exposed to strongly elevated temperatures.
Jens T. Birkholzer, Yves Guglielmi, and Christophe Nussbaum
Saf. Nucl. Waste Disposal, 2, 61–62, https://doi.org/10.5194/sand-2-61-2023, https://doi.org/10.5194/sand-2-61-2023, 2023
Short summary
Short summary
This presentation discusses a series of in situ experiments of fault activation by fluid injection conducted in argillite rock at the Mont Terri underground research laboratory in Switzerland to better understand whether pressurization of natural faults can lead to their reactivation and permeability generation in case such features are present near disposal tunnels. Lessons learned from these experiments help inform the safety assessment of geologic disposal in argillite host rock.
Jens T. Birkholzer, LianGe Zheng, Prasad Nair, and Timothy Gunter
Saf. Nucl. Waste Disposal, 2, 29–30, https://doi.org/10.5194/sand-2-29-2023, https://doi.org/10.5194/sand-2-29-2023, 2023
Short summary
Short summary
More than a decade ago, the US Department of Energy (DOE) initiated a new research and development (R&D) program to provide a sound technical basis for geologic disposal options across clay, crystalline, and salt host rocks. The program established partnerships with international institutions and developed a number of collaborative R&D activities. This presentation gives an overview of these activities, with a focus on the coupled processes occurring in engineered and natural barriers.
Liange Zheng, Chun Chang, Sharon Borglin, Sangcheol Yoon, Chunwei Chou, Yuxin Wu, and Jens T. Birkholzer
Saf. Nucl. Waste Disposal, 2, 181–182, https://doi.org/10.5194/sand-2-181-2023, https://doi.org/10.5194/sand-2-181-2023, 2023
Short summary
Short summary
Bentonite buffer surrounding the waste canister is a critical part of the multi-barrier system for high-level radioactive waste geological repositories that undergo heating from heat-emitting waste and hydration from the host rock. Thus, extensive research was conducted to study the alteration of bentonite due to heating and hydration under high temperatures (200 °C); this work provides valuable data for model validation.
Jens T. Birkholzer, Liange Zheng, and Jonny Rutqvist
Saf. Nucl. Waste Disposal, 1, 83–84, https://doi.org/10.5194/sand-1-83-2021, https://doi.org/10.5194/sand-1-83-2021, 2021
Short summary
Short summary
This presentation gives on overview of the complex thermo-hydro-mechanical and chemical (THMC) processes occurring upon the disposal of heat-producing high-level radioactive waste in geologic repositories. Here, we present initial investigations of repository behavior exposed to strongly elevated temperatures.
Short summary
This presentation gives an overview of an international research collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. DECOVALEX emphasizes joint analysis and comparative modeling of state-of-the-art field and laboratory experiments, across a range of host rock options and repository designs.
This presentation gives an overview of an international research collaboration for advancing the...