An Open-Access Stress Magnitude Database for Germany
Sophia Morawietz
CORRESPONDING AUTHOR
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Germany
Institute of Applied Geosciences, Technical University Berlin, Germany
Moritz Ziegler
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Germany
Karsten Reiter
Institute of Applied Geosciences, Technical University Darmstadt, Germany
the SpannEnD Project Team
A full list of authors appears at the end of the paper.
Related authors
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Moritz Ziegler and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 187–188, https://doi.org/10.5194/sand-1-187-2021, https://doi.org/10.5194/sand-1-187-2021, 2021
Short summary
Short summary
The Earth's crust is subject to constant stress which is manifested by earthquakes at plate boundaries. This stress is not only at plate boundaries but everywhere in the crust. A profound knowledge of the magnitude and orientation of the stress is important to select and build a safe deep geological repository for nuclear waste. We demonstrate how to build computer models of the stress state and show how to deal with the associated uncertainties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Moritz O. Ziegler, Oliver Heidbach, John Reinecker, Anna M. Przybycin, and Magdalena Scheck-Wenderoth
Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016, https://doi.org/10.5194/se-7-1365-2016, 2016
Short summary
Short summary
Subsurface engineering relies on sparsely distributed data points of the stress state of the earth's crust. 3D geomechanical--numerical modelling is applied to estimate the stress state in the entire volume of a large area. We present a multi-stage approach of differently sized models which provide the stress state in an area of interest derived from few and widely scattered data records. Furthermore we demonstrate the changes in reliability of the model depending on different input parameters.
T. Hergert, O. Heidbach, K. Reiter, S. B. Giger, and P. Marschall
Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015, https://doi.org/10.5194/se-6-533-2015, 2015
Short summary
Short summary
A numerical model integrating the structure and mechanical properties of a sedimentary sequence in the Alpine foreland is presented to show that topography, tectonic faults and, most of all, spatialy variable rock properties affect the state of stress at depth. The tectonic forces acting on the sequence are primarily taken up by the stiff rock units leaving the weaker units in a stress shadow.
K. Reiter and O. Heidbach
Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, https://doi.org/10.5194/se-5-1123-2014, 2014
Cited articles
Morawietz, S., Heidbach, O., Reiter, K., Ziegler, M. O., Rajabi, M.,
Zimmerman, G., Müller, B., and Tingay, M.: An open-access stress
magnitude database for Germany and adjacent regions, Geothermal Energy, 8, 25,
https://doi.org/10.1186/s40517-020-00178-5, 2020.
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Knowledge of the crustal stress state is important for the assessment of subsurface stability....