From process to system understanding with multi-disciplinary investigation methods: set-up and first results of the CD-A experiment (Mont Terri rock laboratory)
A potential repository site for high-level radioactive waste should ensure the highest possible safety level over a period of one million years. In addition to design issues, demonstrating the integrity of the barrier is essential as it ensures the long-term containment of radioactive waste. Therefore, a multi-disciplinary approach is necessary for the characterization of the surrounding rock and for the understanding of the occurring physical processes. For site selection, however, the understanding of the respective system is essential as well: Do fault zones exist in the relevant area? Are these active and relevant for interpreting system behavior? What is the role of the existing heterogeneities of the claystone and how do these site-dependent conditions influence the physical effects? To answer these questions, the site-selection procedure requires underground exploration, which includes geophysical and geological investigations on milli- to decameter scales. Their results serve as the basis for numerical modelling. This combined, multi-disciplinary interpretation requires extensive knowledge of the various methods, their capabilities, limitations, and areas of application.
In the cyclic deformation (CD-A) experiment in the Mont Terri rock laboratory, the hydraulic–mechanical effects due to excavation and the climatic conditions within the rock laboratory are investigated in two niches in the Opalinus Clay. The twin niches differ mainly with regard to the relative humidity inside them, but are also characterized by different boundary conditions such as existing fault zones, the technical construction of the neighboring gallery, etc. In order to gain insights into the relevance of the individual influences, comparative studies are being carried out on both niches. The presented results provide a first insight into the initial experimental years of the CD-A long-term experiment and illustrate the benefits of multi-disciplinary investigations in terms of system understanding and the scale dependency of physical effects. Amongst other effects, the assessment of the impact of heterogeneities on the deformation behavior and the evolution of pore water pressure is very complex and benefits from geological interpretation and measurements of for example deformation, water content, and pore pressure. The numerical modeling allows statements about the interaction of different processes and thus enables an interpretation of the overall system, taking into account the knowledge gained by the multi-disciplinary investigation.
Ein potenzieller Endlagerstandort für hochradioaktive Abfälle sollte über einen Zeitraum von einer Million Jahren das höchstmögliche Sicherheitsniveau gewährleisten. Neben Aspekten der Konstruktion ist es wesentlich, die Intaktheit der Barriere nachzuweisen, da diese den langfristigen Einschluss von radioaktiven Abfällen sicherstellt. Für die Charakterisierung des umgebenden Gesteins und das Verständnis der ablaufenden physikalischen Prozesse ist daher ein multidisziplinärer Ansatz notwendig. Für die Standortwahl ist jedoch auch das Verständnis des jeweiligen Systems wesentlich: Gibt es im betreffenden Gebiet Störungszonen? Sind diese aktiv und für die Interpretation des Systemverhaltens entscheidend? Welche Rolle spielen die vorhandenen Heterogenitäten des Tongesteins und wie beeinflussen diese standortabhängigen Bedingungen die physikalischen Effekte? Zur Beantwortung dieser Fragen erfordert das Standortauswahlverfahren unterirdische Erkundungen, die geophysikalische und geologische Untersuchungen im Millimeter- bis Dezimeterbereich umfassen. Deren Ergebnisse bilden die Grundlage für numerische Modellierungen. Diese kombinierte, multidisziplinäre Interpretation setzt umfassendes Wissen über die verschiedenen Methoden, ihre Möglichkeiten, Grenzen und Anwendungsbereiche voraus.
Im CD-A-Experiment (cyclic deformation) im Felslabor Mont Terri werden in zwei Nischen in Opalinuston die hydraulisch-mechanischen Effekte aufgrund des Aushubs und die klimatischen Bedingungen im Felslabor untersucht. Die Zwillingsnischen unterscheiden sich vor allem in der relativen Luftfeuchtigkeit innerhalb der Nischen, weisen aber auch unterschiedliche Randbedingungen wie vorhandene Störungszonen, den technischen Aufbau des Nachbarstollens etc. auf. Um Erkenntnisse über die Bedeutung der einzelnen Einflüsse zu gewinnen, werden zu beiden Nischen vergleichende Untersuchungen durchgeführt. Die vorgestellten Ergebnisse geben einen ersten Einblick in die Anfangsjahre des CD-A-Langzeitexperiments und veranschaulichen die Vorteile multidisziplinärer Untersuchungen in Hinblick auf das Systemverständnis und die Skalenabhängigkeit physikalischer Effekte. Neben anderen Effekten ist die Einschätzung der Auswirkungen von Heterogenitäten auf das Deformationsverhalten und die Entwicklung des Porenwasserdrucks sehr komplex. Sie profitiert von geologischen Interpretationen und Messungen von z. B. Deformation, Wassergehalt und Porendruck. Die numerische Modellierung erlaubt Aussagen zum Zusammenwirken verschiedener Prozesse und ermöglicht es somit, das Gesamtsystem unter Berücksichtigung der durch die multidisziplinäre Untersuchung gewonnenen Erkenntnisse zu interpretieren.